Matemática, perguntado por nicolyzm, 1 ano atrás

Sabendo que o cossec=5/4 e x é agudo, calcule o valor da expressão 9.(sec² x + tg² x)?

Soluções para a tarefa

Respondido por Lukyo
10
\large\begin{array}{l} \mathsf{9\cdot (sec^2\,x+tg^2\,x)}\\\\ =\mathsf{9\cdot \left(\dfrac{1}{cos^2\,x}+\dfrac{sen^2\,x}{cos^2\,x}\right)}\\\\ =\mathsf{9\cdot \left(\dfrac{1+sen^2\,x}{cos^2\,x}\right)}\\\\ =\mathsf{9\cdot \dfrac{1+sen^2\,x}{1-sen^2\,x}}\\\\ =\mathsf{9\cdot \dfrac{1+\frac{1}{cossec^2\,x}}{1-\frac{1}{cossec^2\,x}}} \end{array}

\large\begin{array}{l} =\mathsf{9\cdot \dfrac{1+\frac{1}{cossec^2\,x}}{1-\frac{1}{cossec^2\,x}}\cdot \dfrac{cossec^2\,x}{cossec^2\,x}}\\\\ =\mathsf{9\cdot \dfrac{\left(1+\frac{1}{cossec^2\,x}\right )\cdot cossec^2\,x}{\left(1-\frac{1}{cossec^2\,x}\right)\cdot cossec^2\,x}}\\\\ =\mathsf{9\cdot \dfrac{cossec^2\,x+1}{cossec^2\,x-1}} \end{array}


\large\begin{array}{l} \textsf{Substituindo }\mathsf{cossec\,x=\dfrac{5}{4},}\\\\ =\mathsf{9\cdot \dfrac{(\frac{5}{4})^2+1}{(\frac{5}{4})^2-1}}\\\\=\mathsf{9\cdot \dfrac{\frac{25}{16}+1}{\frac{25}{16}-1}}\\\\ =\mathsf{9\cdot \dfrac{\frac{25}{16}+1}{\frac{25}{16}-1}\cdot \dfrac{16}{16}}\\\\ =\mathsf{9\cdot \dfrac{\left(\frac{25}{16}+1\right)\cdot 16}{\left(\frac{25}{16}-1\right)\cdot 16}}\\\\ =\mathsf{9\cdot \dfrac{25+16}{25-16}}\\\\ =\mathsf{\diagup\!\!\!\! 9\cdot \dfrac{41}{\diagup\!\!\!\! 9}}\\\\ =\mathsf{41}\qquad\checkmark \end{array}


\large\begin{array}{l} \textsf{D\'uvidas? Comente.}\\\\\\ \textsf{Bons estudos! :-)} \end{array}


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7340384
nicolyzm: Obrigado!
Perguntas interessantes