Sabendo que o 1 é uma das raízes da equação x³ + 7x² + kx - 15 = 0, Calcule o valor de k e as outras raízes.
Usuário anônimo:
completei
Soluções para a tarefa
Respondido por
12
Explicação passo-a-passo:
x³ + 7x² + kx - 15 = 0
1³ + 7.1² + k.1 - 15 = 0
1 + 7 + k - 15 = 0
k - 7 = 0
k = 7
Como 1 é raiz, o polinômio é divisível por x - 1
x³ + 7x² + 7x - 15 | x - 1
-x³ + x² x² + 8x + 15
----------
8x² + 7x - 15
-8x² + 8x
-------------
15x - 15
-15x + 15
--------------
(0)
x² + 8x + 15 = 0
Δ = 8² - 4.1.15
Δ = 64 - 60
Δ = 4
x = (-8 ± √4)/2.1 = (-8 ± 2)/2
x' = (-8 + 2)/2 = -6/2 = -3
x" = (-8 - 2)/2 = -10/2 = -5
As outras raízes são -3 e -5
Perguntas interessantes