Matemática, perguntado por pedroB97, 1 ano atrás


Sabendo que cossec x = 5/4  e  X  é   do primeiro quadrante, calcule o valor da expressão  25sen2 x -  9 tg2 x 
   
obs : esse 2 ,na frente do seno e da tg é elevado 


pedroB97: please??

Soluções para a tarefa

Respondido por MATHSPHIS
34
Primeiramente temos que senx = 1/cossec x
Então sen x = 4/5

Agora baseando-se na relação fundamental da trigonometria:
se2 x + cos 2 x= 1
temos que:
(\frac{4}{5})^2+cos^2 x =1 \rightarrow cos x= \sqrt{1-\frac{16}{25}}=\frac{3}{5}
Agora calculando o valor da expressão:
25sen^2 x -  9 tg^2 x= 25.(\frac{4}{5})^2-9.\frac{(\frac{4}{5})^2}{(\frac{3}{5})^2}


25.(\frac{4}{5})^2-9.\frac{(\frac{4}{5})^2}{(\frac{3}{5})^2}= 25.\frac{16}{25}-9.\frac{16}{9}=0
Perguntas interessantes