Matemática, perguntado por thefrogk78, 10 meses atrás

Sabendo que a soma das raízes da equação 2x²-(m+2)x+5=0 é ⅔, o valor de x é:
a)-⅓
b)⅓
c)⅔
d)-¼​


thefrogk78: a fração da letra D é na verdade -⅔
araujofranca: Deseja o valor de x ou o valor de m:?
thefrogk78: O valor de X então
araujofranca: É o valor de x: ? Confirme, por favor.

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

A soma das raízes de uma equação do segundo grau é dada por:

\sf S=\dfrac{-b}{a}

\sf \dfrac{-[-(m+2)]}{2}=\dfrac{2}{3}

\sf \dfrac{m+2}{2}=\dfrac{2}{3}

\sf 3\cdot(m+2)=2\cdot2

\sf 3m+6=4

\sf 3m=4-6

\sf 3m=-2

\sf m=\dfrac{-2}{3}


thefrogk78: é, a letra D na verdade era pra ser -⅔ só que eu acabei colocando outro
araujofranca: A questão pede o valor de x
Usuário anônimo: pede m ^-^
araujofranca: Eu leio: "o valor de x é:"
Usuário anônimo: só foi um erro de digitação, assim como o item d, como ele disse acima ^-^
araujofranca: Ok.
thefrogk78: qual é o valor de X? pode escrever pelo comentário msm
Respondido por araujofranca
1

Resposta:

     m  =  - 2/3

. A equação não admite raiz real

Explicação passo-a-passo:

.

.      Equação de segundo grau

.

.        2x²  -  (m + 2).x  +  5  =  0

.

.          a = 2,      b = - (m + 2)  =  - m - 2,          c = 5

.

SOMA DAS RAÍZES  =  2/3

.

Pela relação de Girard:

.

Soma das raízes  =  - b / a

.

==>   - (- m - 2) / 2  =  2 / 3

.        (m + 2) / 2  =  2 / 3

.        3.(m + 2)   =  2 . 2

.        3.m  +  6  =  4

.        3.m  =  4  -  6

.        3.m  =  - 2

.        m  =  - 2/3

.

Como m  =  - 2/3  =>  b  =  - (- 2/3)  - 2

.                                        =   2/3  -  2

.                                        =   2/3  -  6/3

.                                        =   - 4/3

.

Δ  =  b²  -  4 . a . c

Δ  =  (- 4/3)²  -  4 . 2 . 5

Δ  =  16/9  -  40

Δ  =  - 344/9  <  0

==>  a equação não admite raiz real

.

(Espero ter colaborado)

Perguntas interessantes