Matemática, perguntado por pudimmmmmm70, 9 meses atrás

Sabendo que À é um ângulo
agudo de um triângulo
retângulo ABC e cos(90 - A) =
1/3, qual a tg de A?*

Anexos:

Soluções para a tarefa

Respondido por marciocbe
2

Resposta:

Olá boa noite.

Uma das muitas relações trigonométricas é :

sen(A)=cos(90-A)

cos(A)=sen(90-A)

Importante saber essa relação para resolver a questão.

Se cos (90-A)  = 1/3 , então  sen(A) = 1/3

Lembre-se agora que sen A = (cateto oposto) / hipotenusa, então:

cateto oposto = 1

hipotenusa = 3

Por pitágoras:

(hipotenusa)² = (cateto oposto)² + (cateto adjacente)²

3² = 1² + (cateto adjacente)²

Então:

(cateto adjacente)² = 9 - 1

cateto adjacente = \sqrt{8}=\sqrt{4} .\sqrt{2}  = 2\sqrt{2}

Como

tangente =  cateto oposto

                 cateto adjacente

tg A = 1 / 2\sqrt{2}

tg A = 1 / 2,828

tg A =~ 0,3536

Alternativa B


pudimmmmmm70: MUITO OBRIGADA !!
marciocbe: eu que vou
marciocbe: eu que agradeço
marciocbe: ignore "vou"
Perguntas interessantes