Sabe-se que sen a= 4/5 e sen
b=12/13 determine sen(a+b), cos(a-b) e tg(a+b)
Metalus:
Poxa, só colocou 5 pontos haha, a solução é um pouco grande, só terminar aqui e já posto
Soluções para a tarefa
Respondido por
109
Antes calcule os cossenos de cada um.
![( \frac{4}{5} )^2+cos^2a=1\\
cos^2a=1- \frac{16}{25} \\
cos(a)= \frac{3}{5} \\\\
(\frac{12}{13} ) ^2+cos^2b=1\\
cos^2b=1- \frac{144}{169} \\
cos(b)= \frac{5}{13} ( \frac{4}{5} )^2+cos^2a=1\\
cos^2a=1- \frac{16}{25} \\
cos(a)= \frac{3}{5} \\\\
(\frac{12}{13} ) ^2+cos^2b=1\\
cos^2b=1- \frac{144}{169} \\
cos(b)= \frac{5}{13}](https://tex.z-dn.net/?f=%28+%5Cfrac%7B4%7D%7B5%7D+%29%5E2%2Bcos%5E2a%3D1%5C%5C%0Acos%5E2a%3D1-+%5Cfrac%7B16%7D%7B25%7D+%5C%5C%0Acos%28a%29%3D+%5Cfrac%7B3%7D%7B5%7D+%5C%5C%5C%5C%0A+%28%5Cfrac%7B12%7D%7B13%7D+%29+%5E2%2Bcos%5E2b%3D1%5C%5C%0Acos%5E2b%3D1-+%5Cfrac%7B144%7D%7B169%7D+%5C%5C%0Acos%28b%29%3D+%5Cfrac%7B5%7D%7B13%7D+)
Agora aplicar a soma dos arcos.
![Sen(a+b)=Sen(a)*Cos(b)+Sen(b)*Cos(a)\\
Sen(a+b)= \frac{4}{5}* \frac{5}{13} + \frac{12}{13} \frac{3}{5} \\
\boxed{Sen(a+b)= \frac{56}{65}} \\\\
Cos(a-b)=Cos(a)*Cos(b)+Sen(a)*Sen(b)\\
Cos(a-b)= \frac{3}{5}* \frac{5}{13} + \frac{4}{5}* \frac{12}{13} \\\\
\boxed{Cos(a-b)= \frac{63}{65} } Sen(a+b)=Sen(a)*Cos(b)+Sen(b)*Cos(a)\\
Sen(a+b)= \frac{4}{5}* \frac{5}{13} + \frac{12}{13} \frac{3}{5} \\
\boxed{Sen(a+b)= \frac{56}{65}} \\\\
Cos(a-b)=Cos(a)*Cos(b)+Sen(a)*Sen(b)\\
Cos(a-b)= \frac{3}{5}* \frac{5}{13} + \frac{4}{5}* \frac{12}{13} \\\\
\boxed{Cos(a-b)= \frac{63}{65} }](https://tex.z-dn.net/?f=Sen%28a%2Bb%29%3DSen%28a%29%2ACos%28b%29%2BSen%28b%29%2ACos%28a%29%5C%5C%0ASen%28a%2Bb%29%3D+%5Cfrac%7B4%7D%7B5%7D%2A+%5Cfrac%7B5%7D%7B13%7D++%2B+%5Cfrac%7B12%7D%7B13%7D++%5Cfrac%7B3%7D%7B5%7D+%5C%5C%0A%5Cboxed%7BSen%28a%2Bb%29%3D+%5Cfrac%7B56%7D%7B65%7D%7D+%5C%5C%5C%5C%0ACos%28a-b%29%3DCos%28a%29%2ACos%28b%29%2BSen%28a%29%2ASen%28b%29%5C%5C%0ACos%28a-b%29%3D+%5Cfrac%7B3%7D%7B5%7D%2A++%5Cfrac%7B5%7D%7B13%7D+%2B+%5Cfrac%7B4%7D%7B5%7D%2A++%5Cfrac%7B12%7D%7B13%7D+%5C%5C%5C%5C%0A%5Cboxed%7BCos%28a-b%29%3D+%5Cfrac%7B63%7D%7B65%7D+%7D)
Agora é necessário calcular as tangentes de cada um.
![Tg(a)= \frac{Sen(a)}{Cos(a)} \\ Tg(a)= \frac{4/5}{3/5} \\ Tg(a)= \frac{4}{3}\\\\
Tg(b)= \frac{12/13}{5/13} \\
Tg(b)= \frac{12}{5} Tg(a)= \frac{Sen(a)}{Cos(a)} \\ Tg(a)= \frac{4/5}{3/5} \\ Tg(a)= \frac{4}{3}\\\\
Tg(b)= \frac{12/13}{5/13} \\
Tg(b)= \frac{12}{5}](https://tex.z-dn.net/?f=Tg%28a%29%3D+%5Cfrac%7BSen%28a%29%7D%7BCos%28a%29%7D+%5C%5C+Tg%28a%29%3D+%5Cfrac%7B4%2F5%7D%7B3%2F5%7D+%5C%5C+Tg%28a%29%3D+%5Cfrac%7B4%7D%7B3%7D%5C%5C%5C%5C%0ATg%28b%29%3D+%5Cfrac%7B12%2F13%7D%7B5%2F13%7D+%5C%5C%0ATg%28b%29%3D+%5Cfrac%7B12%7D%7B5%7D+)
Por último a soma do arco das tangentes.
![Tg(a+b)= \frac{Tg(a)+Tg(b)}{1-Tg(a)*Tg(b)} \\
Tg(a+b)= \frac{4/3+12/5}{1- ( \frac{4}{3} * \frac{12}{5}) } \\
Tg(a+b)= \frac{56/15}{-33/15} \\
\boxed{Tg(a+b)= \frac{-56}{33} } Tg(a+b)= \frac{Tg(a)+Tg(b)}{1-Tg(a)*Tg(b)} \\
Tg(a+b)= \frac{4/3+12/5}{1- ( \frac{4}{3} * \frac{12}{5}) } \\
Tg(a+b)= \frac{56/15}{-33/15} \\
\boxed{Tg(a+b)= \frac{-56}{33} }](https://tex.z-dn.net/?f=Tg%28a%2Bb%29%3D+%5Cfrac%7BTg%28a%29%2BTg%28b%29%7D%7B1-Tg%28a%29%2ATg%28b%29%7D+%5C%5C%0ATg%28a%2Bb%29%3D+%5Cfrac%7B4%2F3%2B12%2F5%7D%7B1-+%28+%5Cfrac%7B4%7D%7B3%7D+%2A+%5Cfrac%7B12%7D%7B5%7D%29+%7D+%5C%5C%0ATg%28a%2Bb%29%3D+%5Cfrac%7B56%2F15%7D%7B-33%2F15%7D+%5C%5C%0A%5Cboxed%7BTg%28a%2Bb%29%3D+%5Cfrac%7B-56%7D%7B33%7D+%7D)
Agora aplicar a soma dos arcos.
Agora é necessário calcular as tangentes de cada um.
Por último a soma do arco das tangentes.
Perguntas interessantes
Biologia,
1 ano atrás
Ed. Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás