Matemática, perguntado por rosanassilva92, 6 meses atrás

resposta certa por favor obrigada​

Anexos:

Soluções para a tarefa

Respondido por MythPi
50

Resposta correta:

  \quad {\because \quad \boxed{\boxed{\begin{array}{lr}\red{ {\space} \det A = 2  \quad {;} \quad  \det A^{2} = 4 {\space} }\end{array}}}}

 \bf\large\gray{\underline{\qquad \qquad\qquad \qquad \qquad \qquad \qquad \quad }} \\ \\

 \quad\quad\huge\mid{\boxed{\bf{\blue{ Matem\acute{a}tica }}}\mid}\\ \\

Solução passo a passo

~

Matriz de Ordem 2 ou matriz 2 x 2.

ex.:

\boxed{~~A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \rightarrow\det A=a_{11}\:\cdot\:a_{22}-a_{21}\:\cdot\:a_{12}~~}\\\\

Como vimos acima, para resolver, primeiro multiplica os valores constantes nas diagonais, um principal e um secundário, em seguida, subtrair os resultados obtidos a partir desta multiplicação.

\\ \\ \large\underline{ \overline{\boxed{\begin{array}{clr}\\ \displaystyle{ {~}A=\begin{bmatrix}2&4\\1&3\end{bmatrix} {~} }\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\end{array}}}}\\ \\ \tiny \vdash \text{forma \ simplificada} \dashv \\ \\

Resolvendo \underline{\gray{\det\:A}}

~

Usando a fórmula:

\boxed{\qquad\qquad{\det\begin{array}{|lr|}a&b\\c&d\end{array}=ad- bc}\qquad\qquad}\\ \\

{\quad}{\space}\large\gray{ \downarrow }{\quad}{\quad}\displaystyle\text{$\begin{aligned} =\det\begin{array}{|lr|} 2&4\\ 1&3 \end{array} \end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad}{\quad}\displaystyle\text{$\begin{aligned}=2 \: \cdot \: 3 - 4\: \cdot \: 1\end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad}\displaystyle\text{$\begin{aligned} = 6 -4\:  \cdot \: 1\end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad}\displaystyle\text{$\begin{aligned} = 6 - 4  \end{aligned}$}

\begin{gathered}{{\quad}{\space}\large\gray{ \uparrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned}\boxed{~~\orange{= 2}~~} \end{aligned}$}}\\ \\ \end{gathered} \\ \\

Resolvendo \underline{\gray{\det\:A^{2}}}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} =\begin{bmatrix}2&4\\ 1&3\end{bmatrix}^{2} \end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} = \begin{bmatrix}2&4\\1&3\end{bmatrix}\begin{bmatrix}2&4\\1&3\end{bmatrix}\end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} =\begin{bmatrix}4 + 4&2 \: \cdot \: 4 + 4 \:\cdot \: 3\\ 1 \: \cdot \: 2 + 3 \: \cdot \: 1&1 \: \cdot \: 4 + 3 \: \cdot \: 3\end{bmatrix}\end{aligned}$}

{\quad}{\space} \large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} =\begin{bmatrix}8&20 \\ 1 \: \cdot \: 2 + 3 \: \cdot \: 1&1 \: \cdot \: 4 + 3 \: \cdot \: 3\end{bmatrix}\end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} =\begin{bmatrix}8&20 \\ 5&4 + 3 \: \cdot \: 3\end{bmatrix}\end{aligned}$}

{\quad}{\space} \large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} =\begin{bmatrix}8&20 \\ 5&13\end{bmatrix}\end{aligned}$}

Usando a fórmula:

\boxed{\qquad\qquad{\det\begin{array}{|lr|}a&b\\c&d\end{array}=ad- bc}\qquad\qquad}\\ \\

{\quad}{\space}\large\gray{ \downarrow }{\quad}{\quad} \displaystyle\text{$\begin{aligned} = \det \begin{array}{|lr|}8&20\\5&13\end{array}\end{aligned}$}

{\quad}{\space}\large\gray{ \downarrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned} = 104 - 20 \: \cdot \: 5 \end{aligned}$}

\begin{gathered}{{\quad}{\space}\large\gray{ \uparrow }{\quad} {\quad} \displaystyle\text{$\begin{aligned}\boxed{~~\orange{= 4}~~} \end{aligned}$}}\\ \\\end{gathered}\\ \\

Observações:

  1. \sf O\:determinante\:de\:uma\: matriz\:quadrada \\ \sf \acute{e}\:um\: \acute{u}nico\:valor\:num\acute{e}rico \:ou\:um \\ \sf valor\:de\:resumo \: que\:representa\:todo\:o \\ \sf conjunto\:de\:elementos\:da\: matriz{.}\\ ~ \\ \bf \large\gray{\underline{\qquad \qquad\qquad \qquad \qquad \qquad \qquad \quad \quad}} \\ ~ \\ ~
  2. \sf Como\:vimos{,}\:o\: determinante\:para\:a\:matriz\: \\ \sf quadrada\:de\:ordem\:2x2\:pode\:  ser\:facilmente \\ \sf calculado \: usando\:a\:f\acute{o}rmula{.}\\ \\

Solução:

 \quad {\therefore \quad\boxed{\boxed{\begin{array}{lr}\red{ {\space} \det A = 2\quad {;} \quad  \det A^{2} = 4 {\space} }\end{array}}}} \\ \\

\quad \text{\underline{Att.}}

 {\huge\boxed { {\bf{M}}}\boxed { \red {\bf{y}}} \boxed { \blue {\bf{t}}} \boxed { \gray{\bf{h}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{P}}} \boxed {\bf{i}}}  \\ \\

 \quad {\vdots\quad\large\boxed {\boxed{02:10h}~29.10.21}}

 \bf\large\gray{\underline{\qquad \qquad\qquad \qquad \qquad \qquad \qquad \quad }} \\ \\

Veja mais em:

\orange{\square}https://brainly.com.br/tarefa/49349820

\orange{\square}https://brainly.com.br/tarefa/49704299

Anexos:

amandinhassilv: oi
amandinhassilv: pode me ajudar
amandinhassilv: por favor
Usuário anônimo: resposta incríveis como sempre
Perguntas interessantes