responder com a resolução
Anexos:
![](https://pt-static.z-dn.net/files/d21/e4c2a463029f91368cc876d56f157219.jpg)
Soluções para a tarefa
Respondido por
2
Achando a integral indefinida (sem a constante de integração):
![\int(3x-\frac{x^{3}}{4})dx=\int3xdx-\int\frac{x^{3}}{4}dx\\\\\int(3x-\frac{x^{3}}{4})dx=3\int x^{1}dx-\frac{1}{4}\int x^{3}dx\\\\\int(3x-\frac{x^{3}}{4})dx=3\cdot\frac{x^{1+1}}{1+1}-\frac{1}{4}\cdot\frac{x^{3+1}}{3+1}\\\\\boxed{\int(3x-\frac{x^{3}}{4})dx=\dfrac{3x^{2}}{2}-\frac{x^{4}}{16}} \int(3x-\frac{x^{3}}{4})dx=\int3xdx-\int\frac{x^{3}}{4}dx\\\\\int(3x-\frac{x^{3}}{4})dx=3\int x^{1}dx-\frac{1}{4}\int x^{3}dx\\\\\int(3x-\frac{x^{3}}{4})dx=3\cdot\frac{x^{1+1}}{1+1}-\frac{1}{4}\cdot\frac{x^{3+1}}{3+1}\\\\\boxed{\int(3x-\frac{x^{3}}{4})dx=\dfrac{3x^{2}}{2}-\frac{x^{4}}{16}}](https://tex.z-dn.net/?f=%5Cint%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D%5Cint3xdx-%5Cint%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7Ddx%5C%5C%5C%5C%5Cint%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D3%5Cint+x%5E%7B1%7Ddx-%5Cfrac%7B1%7D%7B4%7D%5Cint+x%5E%7B3%7Ddx%5C%5C%5C%5C%5Cint%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D3%5Ccdot%5Cfrac%7Bx%5E%7B1%2B1%7D%7D%7B1%2B1%7D-%5Cfrac%7B1%7D%7B4%7D%5Ccdot%5Cfrac%7Bx%5E%7B3%2B1%7D%7D%7B3%2B1%7D%5C%5C%5C%5C%5Cboxed%7B%5Cint%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D%5Cdfrac%7B3x%5E%7B2%7D%7D%7B2%7D-%5Cfrac%7Bx%5E%7B4%7D%7D%7B16%7D%7D)
______________________
![\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=\left\dfrac{3x^{2}}{2}-\dfrac{x^{4}}{16}\right]_{0}^{4}\\\\\\\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=\left(\dfrac{3(4)^{2}}{2}-\dfrac{4^{4}}{16}\right)-\left(\dfrac{3(0)^{2}}{2}-\dfrac{0^{4}}{16}\right)\\\\\\\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=\dfrac{3(16)}{2}-\dfrac{256}{16}-0\\\\\\\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=24-16\\\\\\\boxed{\boxed{\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=8}} \int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=\left\dfrac{3x^{2}}{2}-\dfrac{x^{4}}{16}\right]_{0}^{4}\\\\\\\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=\left(\dfrac{3(4)^{2}}{2}-\dfrac{4^{4}}{16}\right)-\left(\dfrac{3(0)^{2}}{2}-\dfrac{0^{4}}{16}\right)\\\\\\\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=\dfrac{3(16)}{2}-\dfrac{256}{16}-0\\\\\\\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=24-16\\\\\\\boxed{\boxed{\int\limits_{0}^{4}(3x-\frac{x^{3}}{4})dx=8}}](https://tex.z-dn.net/?f=%5Cint%5Climits_%7B0%7D%5E%7B4%7D%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D%5Cleft%5Cdfrac%7B3x%5E%7B2%7D%7D%7B2%7D-%5Cdfrac%7Bx%5E%7B4%7D%7D%7B16%7D%5Cright%5D_%7B0%7D%5E%7B4%7D%5C%5C%5C%5C%5C%5C%5Cint%5Climits_%7B0%7D%5E%7B4%7D%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D%5Cleft%28%5Cdfrac%7B3%284%29%5E%7B2%7D%7D%7B2%7D-%5Cdfrac%7B4%5E%7B4%7D%7D%7B16%7D%5Cright%29-%5Cleft%28%5Cdfrac%7B3%280%29%5E%7B2%7D%7D%7B2%7D-%5Cdfrac%7B0%5E%7B4%7D%7D%7B16%7D%5Cright%29%5C%5C%5C%5C%5C%5C%5Cint%5Climits_%7B0%7D%5E%7B4%7D%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D%5Cdfrac%7B3%2816%29%7D%7B2%7D-%5Cdfrac%7B256%7D%7B16%7D-0%5C%5C%5C%5C%5C%5C%5Cint%5Climits_%7B0%7D%5E%7B4%7D%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D24-16%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cint%5Climits_%7B0%7D%5E%7B4%7D%283x-%5Cfrac%7Bx%5E%7B3%7D%7D%7B4%7D%29dx%3D8%7D%7D)
______________________
matheustalexandre:
é esse resultado mesmo, e so sabia achar a intregal x ao cubo divido sobre 4
Perguntas interessantes
Matemática,
1 ano atrás
Português,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás