responder as questoes 63, 64 e 65
Anexos:
Heroe:
Dica, nunca coloque listas de exercícios. Quase ninguém vai querer resolver SUA tarefa.
Soluções para a tarefa
Respondido por
2
Ola Islane
63)
a) f(x) = √log2(x - 3) ⇒ Df(x) = { R : x >= 4 }
log2(x - 3) ≥ 0
log2(x - 3)≥ log2(1)
x - 3 ≥ 1
x ≥ 4
b) g(x) = 1/log1/2(x + 4) ⇒ Df(x) = { R : x > -3 or -4 < x < -3 }
log1/2(x + 4) > 0
log1/2(x + 4) > log1/2)(1)
x + 4 > 1
x > -3
x + 4 > 0
x > -4
c) h(x) = x/√log(2x) ⇒ Df(x) = { R : 2x > 1 }
√log(2x) > 0
log(2x) > 0
log(2x) > log(1)
2x > 1
64)
a)
y = log3(x)
y² - 3 ≥ 2y
y² - 2y - 3 ≥ 0
delta
d² = 4 + 12 = 16
d = 4
y1 = (2 + 4)/2 = 3
y2 = (2 - 4)/2 = -1
y1 = log3(x)
log3(x1) = 3
x1 = 27
y2 = log3(x2)
log3(x2) = -1
x2 = 1/3
x ≥ 27
0 < x ≤ 1/3
b)
y = log1/2(x)
y² - 3y - 4 > 0
delta
d² = 9 + 16 = 25
d = 5
y1 = (3 + 5)/2 = 4
y2 = (3 - 5)/2 = -1
y1 = log1/2(x1) = 4 ⇒ x1 = 1/16
y2 = log1/2(x2) = -1 ⇒ x2 = 2
x > 2
0 < x < 1/16
c)
log2(x)² < 4
log2(x)² - 4 < 0
(log2(x) + 2)*(log2(x) - 2) < 0
log2(x) < -2 , x = 1/4
log2(x) = 2, x = 4
1/4 < x < 4
65)
-x² + log3(m)x - 1/4 = 0
a) m = 9
-x² + log3(9)x - 1/4 = 0
-x² + 2x - 1/4 = 0
x² - 2x + 1/4 = 0
delta
d² = 4 - 1 = 3
d = √3
x1 = (2 + √3)/2
x2 = (2 - √3)/2
b) x² - log3(m)x + 1/4 = 0
delta
d² = (log3(m))² - 1 > 0
(log3(m))² > 1
m > 3 , 0 < m < 1/3
63)
a) f(x) = √log2(x - 3) ⇒ Df(x) = { R : x >= 4 }
log2(x - 3) ≥ 0
log2(x - 3)≥ log2(1)
x - 3 ≥ 1
x ≥ 4
b) g(x) = 1/log1/2(x + 4) ⇒ Df(x) = { R : x > -3 or -4 < x < -3 }
log1/2(x + 4) > 0
log1/2(x + 4) > log1/2)(1)
x + 4 > 1
x > -3
x + 4 > 0
x > -4
c) h(x) = x/√log(2x) ⇒ Df(x) = { R : 2x > 1 }
√log(2x) > 0
log(2x) > 0
log(2x) > log(1)
2x > 1
64)
a)
y = log3(x)
y² - 3 ≥ 2y
y² - 2y - 3 ≥ 0
delta
d² = 4 + 12 = 16
d = 4
y1 = (2 + 4)/2 = 3
y2 = (2 - 4)/2 = -1
y1 = log3(x)
log3(x1) = 3
x1 = 27
y2 = log3(x2)
log3(x2) = -1
x2 = 1/3
x ≥ 27
0 < x ≤ 1/3
b)
y = log1/2(x)
y² - 3y - 4 > 0
delta
d² = 9 + 16 = 25
d = 5
y1 = (3 + 5)/2 = 4
y2 = (3 - 5)/2 = -1
y1 = log1/2(x1) = 4 ⇒ x1 = 1/16
y2 = log1/2(x2) = -1 ⇒ x2 = 2
x > 2
0 < x < 1/16
c)
log2(x)² < 4
log2(x)² - 4 < 0
(log2(x) + 2)*(log2(x) - 2) < 0
log2(x) < -2 , x = 1/4
log2(x) = 2, x = 4
1/4 < x < 4
65)
-x² + log3(m)x - 1/4 = 0
a) m = 9
-x² + log3(9)x - 1/4 = 0
-x² + 2x - 1/4 = 0
x² - 2x + 1/4 = 0
delta
d² = 4 - 1 = 3
d = √3
x1 = (2 + √3)/2
x2 = (2 - √3)/2
b) x² - log3(m)x + 1/4 = 0
delta
d² = (log3(m))² - 1 > 0
(log3(m))² > 1
m > 3 , 0 < m < 1/3
Perguntas interessantes