Matemática, perguntado por cybelletravassos237, 6 meses atrás

Resolver, em R, a equação 2x² – 4x – 16 = 0

Soluções para a tarefa

Respondido por Aleske
4

Resposta:

\Large\checkmark~\Large\text{\bf{x_{1}$~=~4}}\\\\\checkmark~\Large\text{\bf{x_{2}$~=~$-$~2}}

Cálculo:

\boxed{\Large\text{\bf{2x^2$~-~4x~-~16~=~0}}}

\large\text{}\begin{cases}a~=~ \text{2} \\b~=~\text{$-$~4}\\c~=~\text{$-$~16}\end{cases}

\Large\text{\bf{\Delta$~=~b^2$~-~4~.~a~.~c}}

\large\text{\Delta$~=~(-4)^2$~-~4~.~2~.~(-16)}\\\\\large\text{\Delta$~=~16~-~4~.~2~.~(-16)}\\\\\large\text{\Delta$~=~16~-~8~.~(-16)}\\\\\large\text{\Delta$~=~16~+~128}\\\\\large\text{\Delta$~=~144}

\Large\text{x~=~$\bf{\dfrac{-b~\pm~\sqrt{\Delta}}{2~.~a}}$}

\large\text{x~=~$\dfrac{-(-4)~\pm~\sqrt{144}}{2~.~2}$}\\\\\\\large\text{x~=~$\dfrac{+4~\pm~12}{4}$}\\\\\\\large\text{x_{1}$~=~$\dfrac{+4~+~12}{4}$}\\\\\\\large\text{x_{1}$~=~$\dfrac{16}{4}$}\\\\\\\boxed{\boxed{\large\text{x_{1}$~=~4}}}\\\\\\\large\text{x_{2}$~=~$\dfrac{+4~-~12}{4}$}\\\\\\\large\text{x_{2}$~=~$\dfrac{-~8}{4}$}\\\\\\\boxed{\boxed{\large\text{x_{2}$~=~$-$~2}}}


Aleske: Obrigado!
Aleske: Sim, eu tentei arrumar mas não deu, continuava dando erro nos códigos.
Aleske: Eu tinha conseguido desbugar, mas aí não aparecia o traço de divisão. Quando recarreguei a página voltou como está agora rsrs
Respondido por Skoy
13

\LARGE\text{$ \underline {\sf Ol\acute{a}{,}\ boa\ tarde!}$}

              \searrow

☛  \large\text{$ \underline{\sf Equac_{\!\!\!,}\tilde{a}o\ do\ 2^o\ Grau.}$} ☃️

➡  \Large\text{$ \sf Como\ calcular\ uma\ equac_{\!\!\!,}\tilde{a}o\ do\ 2^o\ Grau\ ?$}

\large\text{$\sf Para\ calcular\ uma\ equac_{\!\!\!,}\tilde{a}o\ do\ 2^o\ grau,temos\ 2\ f\acute{o}rmulas. $}  

             \swarrow

➡️  \LARGE\text{$ \underline{\sf S\tilde{a}o\ elas}:$}

✏️ \large\text{ $\underline{\sf F\acute{o}rmula\ do\ discriminante}: $}

  \LARGE\boxed{\sf \Delta= b^2 -4\cdot a\cdot b }

✏️ \large\text{ $\underline{\sf F\acute{o}rmula\ de\ bhaskara}: $}

   \LARGE\boxed{\sf \dfrac{-b\ \pm\ \sqrt{\Delta}  }{2\cdot a} }

➡️  \large\text{$\sf Mas\ antes\ de\ aplicar\ as\ f\acute{o}rmulas{,}\ devemos\ achar\ os\ valores $}

\large\text{$\sf  de\ (a{,}\ b{,}\ c) .$}

                      \searrow

✏️ \Large\text{$ \underline{\sf Descobrindo\ os\ valores\ de\ (a{,}\ b{,}\ c)\ da\ sua\ tarefa}:$}

           

  \Longrightarrow\ \large\text{$\sf 2x^2 - 4x - 16 = 0 $} \large\begin{cases}\sf a= 2\\ \sf b= -4\\ \sf c=-16\end{cases}

\Large\text{$ \underline{\sf Pronto{,}\ encontramos\ os\ termos\ (a{,}\ b{,}\ c).}$}

           \Downarrow

\LARGE\boxed{\boxed{\begin{array}{l}\sf a= 2\\ \sf b= -4\\ \sf c= -16 \end{array}}}

✏️ \Large\text{$ \underline{\sf Agora{,}\ podemos\ aplicar\ a\ f\acute{o}rmula\ do\ discriminante.}$}

\large\text{$ \sf \Delta= (-4)^2 -4\cdot 2\cdot (-16) $ } \\\\ \large\text{$ \sf \Delta= 16 -8\cdot (-16) $ }\\\\ \large\text{$ \sf \Delta= 16 + 128$ }\\\\ \large\text{$ \sf \Delta= 144$ }

\Large\text{$ \underline{\sf Pronto{,}\ encontramos\ o\ discriminante.}$}

             \Downarrow

 \LARGE\boxed{\boxed{\begin{array}{l}\sf \Delta= 144\end{array}}}

✏️ \Large\text{$ \underline{\sf Agora{,}\ podemos\ aplicar\ a\ f\acute{o}rmula\ de\ bhaskara.}$}

  \large\text{$ \sf \dfrac{-(-4)\ \pm\ \sqrt{144}  }{4} $ } \\\\\\\large\text{$ \sf \dfrac {4\ \pm\ 12  }{4} $ } \\\\\\\large\text{$ \sf \dfrac {16}{4} = 4$ }

\Large\text{$ \underline{\sf Pronto{,}\ encontramos\ o\ primeiro\ valor\ de\ x.}$}

           \Downarrow

 \LARGE\boxed{\boxed{\begin{array}{l}\sf x^1 = 4\end{array}}}

✏️ \Large\text{$ \underline{\sf Encontrando\ o\ segundo\ valor\ de\ x.}$}

 \large\text{$ \sf \dfrac{-(-4)\ \pm\ \sqrt{144}  }{4} $ } \\\\\\\large\text{$ \sf \dfrac {4\ \pm\ 12  }{4} $ } \\\\\\\large\text{$ \sf -\dfrac {8}{4} = -2$ }

\Large\text{$ \underline{\sf Pronto{,}\ encontramos\ o\ segundo\ valor\ de\ x.}$}

             \Downarrow

 \LARGE\boxed{\boxed{\begin{array}{l}\sf x^2 = -2\end{array}}}

⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶⎶

☃️ \Large\text{$ \underline{\sf Portanto\ a\ soluc_{\!\!\!,}\tilde{a}o\ dessa\ equac_{\!\!\!,}\tilde{a}o\ do\ 2^o\ Grau\ \acute{e}}:$}

                   \Downarrow

   \LARGE\boxed{\boxed{\begin{array}{l}\sf S = \left\{-2{,}\ 4\right\}\end{array}}}

\LARGE\begin{matrix} \underbrace{ \sf By: Pedro } \end{matrix}

Perguntas interessantes