Matemática, perguntado por iriscastroflor2009, 9 meses atrás

resolver as equações do segundo grau incompletas! E completas !!!!!!! ​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

1)

a)

\sf x^2-10x=0

\sf x\cdot(x-10)=0

\sf x'=0

\sf x-10=0~\rightarrow~x"=10

\sf S=\{0,10\}

b)

\sf x^2+9x=0

\sf x\cdot(x+9)=0

\sf x'=0

\sf x+9=0~\rightarrow~x"=-9

\sf S=\{-9,0\}

c)

\sf x^2-625=0

\sf x^2=625

\sf x=\pm\sqrt{625}

\sf x'=25

\sf x"=-25

\sf S=\{-25,25\}

d)

\sf y^2-400=0

\sf y^2=400

\sf y=\pm\sqrt{400}

\sf y'=20

\sf y"=-20

\sf S=\{-20,20\}

2)

a)

\sf x^2+3x-10=0

\sf \Delta=3^2-4\cdot1\cdot(-10)

\sf \Delta=9+40

\sf \Delta=49

\sf x=\dfrac{-3\pm\sqrt{49}}{2\cdot1}=\dfrac{-3\pm7}{2}

\sf x'=\dfrac{-3+7}{2}~\rightarrow~x'=\dfrac{4}{2}~\rightarrow~x'=2

\sf x"=\dfrac{-3-7}{2}~\rightarrow~x"=\dfrac{-10}{2}~\rightarrow~x"=-5

\sf S=\{-5,2\}

b)

\sf 6x^2+x-1=0

\sf \Delta=1^2-4\cdot(-1)\cdot6

\sf \Delta=1+24

\sf \Delta=25

\sf x=\dfrac{-1\pm\sqrt{25}}{2\cdot6}=\dfrac{-1\pm5}{12}

\sf x'=\dfrac{-1+5}{12}~\rightarrow~x'=\dfrac{4}{12}~\rightarrow~x'=\dfrac{1}{3}

\sf x"=\dfrac{-1-5}{12}~\rightarrow~x"=\dfrac{-6}{12}~\rightarrow~x"=\dfrac{-1}{2}

\sf S=\left\{\dfrac{-1}{2},\dfrac{1}{3}\right\}

c)

\sf 2x^2-4x+3=0

\sf \Delta=(-4)^2-4\cdot2\cdot3

\sf \Delta=16-24

\sf \Delta=-8

Não há raízes reais

\sf S=\{~\}

Perguntas interessantes