Resolver a transformação linear.
Quais das seguintes transformações são lineares?
a) T: R³ ------>IR³
T(x,y,z) ------> (x-y,x²,2z)
b) T: M 2x2 -------> IR
T(A)=det(A)
Soluções para a tarefa
Respondido por
1
Olá, Rubens.
Uma transformação T é linear se satisfaz duas condições:
_________________________________________________________________________
![\text{a)}\,\,T:\mathbb{R}^3\to\mathbb{R}^3,\text{ onde }T(x,y,z) =(x-y,x\²,2z),\text{ n\~ao \' e linear, pois:}\\\\ T( \alpha x, \alpha y, \alpha z)=(\alpha x - \alpha y, \alpha^2x^2,2 \alpha z)\\\\ \alpha T(x,y,z) = \alpha (x-y,x\²,2z)=( \alpha x- \alpha y, \underbrace{\alpha x\²}_{ \neq \alpha^2x^2},2 \alpha z)\Rightarrow\\\\ T( \alpha x, \alpha y, \alpha z) \neq \alpha T(x,y,z),\text{ pois a segunda coordenada \'e diferente} \text{a)}\,\,T:\mathbb{R}^3\to\mathbb{R}^3,\text{ onde }T(x,y,z) =(x-y,x\²,2z),\text{ n\~ao \' e linear, pois:}\\\\ T( \alpha x, \alpha y, \alpha z)=(\alpha x - \alpha y, \alpha^2x^2,2 \alpha z)\\\\ \alpha T(x,y,z) = \alpha (x-y,x\²,2z)=( \alpha x- \alpha y, \underbrace{\alpha x\²}_{ \neq \alpha^2x^2},2 \alpha z)\Rightarrow\\\\ T( \alpha x, \alpha y, \alpha z) \neq \alpha T(x,y,z),\text{ pois a segunda coordenada \'e diferente}](https://tex.z-dn.net/?f=%5Ctext%7Ba%29%7D%5C%2C%5C%2CT%3A%5Cmathbb%7BR%7D%5E3%5Cto%5Cmathbb%7BR%7D%5E3%2C%5Ctext%7B+onde+%7DT%28x%2Cy%2Cz%29+%3D%28x-y%2Cx%5C%C2%B2%2C2z%29%2C%5Ctext%7B+n%5C%7Eao+%5C%27+e+linear%2C+pois%3A%7D%5C%5C%5C%5C+T%28+%5Calpha+x%2C+%5Calpha+y%2C+%5Calpha+z%29%3D%28%5Calpha+x+-+%5Calpha+y%2C+%5Calpha%5E2x%5E2%2C2+%5Calpha+z%29%5C%5C%5C%5C+%5Calpha+T%28x%2Cy%2Cz%29+%3D+%5Calpha+%28x-y%2Cx%5C%C2%B2%2C2z%29%3D%28+%5Calpha+x-+%5Calpha+y%2C+%5Cunderbrace%7B%5Calpha+x%5C%C2%B2%7D_%7B+%5Cneq+%5Calpha%5E2x%5E2%7D%2C2+%5Calpha+z%29%5CRightarrow%5C%5C%5C%5C+T%28+%5Calpha+x%2C+%5Calpha+y%2C+%5Calpha+z%29+%5Cneq+%5Calpha+T%28x%2Cy%2Cz%29%2C%5Ctext%7B+pois+a+segunda+coordenada+%5C%27e+diferente%7D)
_________________________________________________________________________
![\text{b)}\,\,T: M_{2\times2}\to\mathbb{R},\text{ onde }T(A)=\det A,\text{ n\~ao \' e linear, pois:}\\\\ \text{Seja }A= \left[\begin{array}{cc}a_{11}&a_{12}&\\a_{13}&a_{22}\end{array}\right] \Rightarrow \det A=a_{11}a_{22}-a_{12}a_{21}\\\\\\ \alpha A= \left[\begin{array}{cc} \alpha a_{11}& \alpha a_{12}&\\ \alpha a_{21}& \alpha a_{22}\end{array}\right] \Rightarrow \text{b)}\,\,T: M_{2\times2}\to\mathbb{R},\text{ onde }T(A)=\det A,\text{ n\~ao \' e linear, pois:}\\\\ \text{Seja }A= \left[\begin{array}{cc}a_{11}&a_{12}&\\a_{13}&a_{22}\end{array}\right] \Rightarrow \det A=a_{11}a_{22}-a_{12}a_{21}\\\\\\ \alpha A= \left[\begin{array}{cc} \alpha a_{11}& \alpha a_{12}&\\ \alpha a_{21}& \alpha a_{22}\end{array}\right] \Rightarrow](https://tex.z-dn.net/?f=%5Ctext%7Bb%29%7D%5C%2C%5C%2CT%3A+M_%7B2%5Ctimes2%7D%5Cto%5Cmathbb%7BR%7D%2C%5Ctext%7B+onde+%7DT%28A%29%3D%5Cdet+A%2C%5Ctext%7B+n%5C%7Eao+%5C%27+e+linear%2C+pois%3A%7D%5C%5C%5C%5C+%5Ctext%7BSeja+%7DA%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da_%7B11%7D%26amp%3Ba_%7B12%7D%26amp%3B%5C%5Ca_%7B13%7D%26amp%3Ba_%7B22%7D%5Cend%7Barray%7D%5Cright%5D+%5CRightarrow+%5Cdet+A%3Da_%7B11%7Da_%7B22%7D-a_%7B12%7Da_%7B21%7D%5C%5C%5C%5C%5C%5C+%5Calpha+A%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+%5Calpha+a_%7B11%7D%26amp%3B+%5Calpha+a_%7B12%7D%26amp%3B%5C%5C+%5Calpha+a_%7B21%7D%26amp%3B+%5Calpha+a_%7B22%7D%5Cend%7Barray%7D%5Cright%5D+%5CRightarrow)
![\underbrace{\det ( \alpha A)}_{T( \alpha A)}= \alpha ^2a_{11}a_{22}- \alpha ^2a_{12}a_{21}= \alpha ^2(a_{11}a_{22}-a_{12}a_{21})= \alpha ^2\underbrace{\det A\R}_{T(A)} \Rightarrow\\\\T( \alpha A)= \alpha^2 T(A)\Rightarrow T( \alpha A) \neq \alpha T(A) \underbrace{\det ( \alpha A)}_{T( \alpha A)}= \alpha ^2a_{11}a_{22}- \alpha ^2a_{12}a_{21}= \alpha ^2(a_{11}a_{22}-a_{12}a_{21})= \alpha ^2\underbrace{\det A\R}_{T(A)} \Rightarrow\\\\T( \alpha A)= \alpha^2 T(A)\Rightarrow T( \alpha A) \neq \alpha T(A)](https://tex.z-dn.net/?f=%5Cunderbrace%7B%5Cdet+%28+%5Calpha+A%29%7D_%7BT%28+%5Calpha+A%29%7D%3D+%5Calpha+%5E2a_%7B11%7Da_%7B22%7D-+%5Calpha+%5E2a_%7B12%7Da_%7B21%7D%3D+%5Calpha+%5E2%28a_%7B11%7Da_%7B22%7D-a_%7B12%7Da_%7B21%7D%29%3D+%5Calpha+%5E2%5Cunderbrace%7B%5Cdet+A%5CR%7D_%7BT%28A%29%7D+%5CRightarrow%5C%5C%5C%5CT%28+%5Calpha+A%29%3D+%5Calpha%5E2+T%28A%29%5CRightarrow+T%28+%5Calpha+A%29+%5Cneq+%5Calpha+T%28A%29)
_________________________________________________________________________
Conclusão: nenhuma das duas transformações acima são lineares.
Uma transformação T é linear se satisfaz duas condições:
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
Conclusão: nenhuma das duas transformações acima são lineares.
Perguntas interessantes
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás