Resolvendo a integral:
Ao Longo da curva R(t) = (t,t²) com 0 < t <, Obtemos:
Foto em anexo.
Anexos:
![](https://pt-static.z-dn.net/files/db6/ac4bdcce649906256905ba105d8dbb3e.png)
Lukyo:
Integral de linha de campo vetorial sobre um curva parametrizada.
Soluções para a tarefa
Respondido por
1
Calcular a integral de linha de um campo vetorial sobre a curva ![C: C:](https://tex.z-dn.net/?f=C%3A)
![\displaystyle\int_C y\,dx+x\,dy \displaystyle\int_C y\,dx+x\,dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C+y%5C%2Cdx%2Bx%5C%2Cdy)
sendo
o campo vetorial
e a curva
é o arco de parábola parametrizado por
![C(t)=(t,\,t^2)~~~~~\text{com }0\le t\le 1. C(t)=(t,\,t^2)~~~~~\text{com }0\le t\le 1.](https://tex.z-dn.net/?f=C%28t%29%3D%28t%2C%5C%2Ct%5E2%29%7E%7E%7E%7E%7E%5Ctext%7Bcom+%7D0%5Cle+t%5Cle+1.)
________________________
Calculando o vetor tangente:
![C'(t)=(1,\,2t) C'(t)=(1,\,2t)](https://tex.z-dn.net/?f=C%27%28t%29%3D%281%2C%5C%2C2t%29)
________________________
A integral de linha pedida é
![\displaystyle\int_C \overrightarrow{\mathbf{F}}(x,\,y)\cdot d\overrightarrow{\mathbf{r}}\\\\\\ =\int_{0}^{1} \overrightarrow{\mathbf{F}}(t,\,t^2)\cdot C'(t)\,dt\\\\\\ =\int_{0}^{1} (t^2,\,t)\cdot (1,\,2t)\,dt\\\\\\ =\int_{0}^{1} (t^2\cdot 1+t\cdot 2t)\,dt\\\\\\ =\int_{0}^{1} (t^2+2t^2)\,dt\\\\\\ =\int_{0}^{1} 3t^2\,dt\\\\\\ =t^3\big|_0^1 \displaystyle\int_C \overrightarrow{\mathbf{F}}(x,\,y)\cdot d\overrightarrow{\mathbf{r}}\\\\\\ =\int_{0}^{1} \overrightarrow{\mathbf{F}}(t,\,t^2)\cdot C'(t)\,dt\\\\\\ =\int_{0}^{1} (t^2,\,t)\cdot (1,\,2t)\,dt\\\\\\ =\int_{0}^{1} (t^2\cdot 1+t\cdot 2t)\,dt\\\\\\ =\int_{0}^{1} (t^2+2t^2)\,dt\\\\\\ =\int_{0}^{1} 3t^2\,dt\\\\\\ =t^3\big|_0^1](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C+%5Coverrightarrow%7B%5Cmathbf%7BF%7D%7D%28x%2C%5C%2Cy%29%5Ccdot+d%5Coverrightarrow%7B%5Cmathbf%7Br%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B0%7D%5E%7B1%7D+%5Coverrightarrow%7B%5Cmathbf%7BF%7D%7D%28t%2C%5C%2Ct%5E2%29%5Ccdot+C%27%28t%29%5C%2Cdt%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B0%7D%5E%7B1%7D+%28t%5E2%2C%5C%2Ct%29%5Ccdot+%281%2C%5C%2C2t%29%5C%2Cdt%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B0%7D%5E%7B1%7D+%28t%5E2%5Ccdot+1%2Bt%5Ccdot+2t%29%5C%2Cdt%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B0%7D%5E%7B1%7D+%28t%5E2%2B2t%5E2%29%5C%2Cdt%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B0%7D%5E%7B1%7D+3t%5E2%5C%2Cdt%5C%5C%5C%5C%5C%5C+%3Dt%5E3%5Cbig%7C_0%5E1)
![=1^3-0^3\\\\ =1 =1^3-0^3\\\\ =1](https://tex.z-dn.net/?f=%3D1%5E3-0%5E3%5C%5C%5C%5C+%3D1)
Resposta: alternativa![\text{b. }1. \text{b. }1.](https://tex.z-dn.net/?f=%5Ctext%7Bb.+%7D1.)
sendo
e a curva
________________________
Calculando o vetor tangente:
________________________
A integral de linha pedida é
Resposta: alternativa
Perguntas interessantes
ENEM,
1 ano atrás
ENEM,
1 ano atrás
ENEM,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás