Matemática, perguntado por niquinjo, 8 meses atrás

resolva usando as propriedade de logaritmo.

Anexos:

niquinjo: resolvi sozinho, obrigado mesmo assim. boa vida a todos s2.

Soluções para a tarefa

Respondido por Worgin
0

\log((\sqrt[3]{\frac{a^4\sqrt{ab}}{b^2\sqrt[3]{bc}}})^2)\\\\2\log(\sqrt[3]{\frac{a^4\sqrt{ab}}{b^2\sqrt[3]{bc}}})\\\\2[\log(\sqrt[3]{a^4\sqrt{ab}})-\log(\sqrt[3]{b^2\sqrt[3]{bc}})]\\\\

2[\log(\sqrt[3]{a^4.(ab)^{\frac{1}{2}}})-\log(\sqrt[3]{b^2(bc)^{\frac{1}{3}}}]\\\\2[\log(\sqrt[3]{a^{\frac{9}{2}}.b^{\frac{1}{2}}})-\log(\sqrt[3]{b^{\frac{7}{3}}.c^{\frac{1}{3}}})]\\\\2[\log({a^{\frac{9}{2}}.b^{\frac{1}{2}})^{\frac{1}{3}}-\log({b^{\frac{7}{3}}.c^{\frac{1}{3}})^{\frac{1}{3}}]\\\\

2[\frac{1}{3}\log({a^{\frac{9}{2}}.b^{\frac{1}{2}})-\frac{1}{3}\log({b^{\frac{7}{3}}.c^{\frac{1}{3}})]\\\\

2\{[\frac{1}{3}](\log({a^{\frac{9}{2}}.b^{\frac{1}{2}})-\log({b^{\frac{7}{3}}.c^{\frac{1}{3}}))\}\\\\

\frac{2}{3}[(\log({a^{\frac{9}{2}}.b^{\frac{1}{2}})-\log({b^{\frac{7}{3}}.c^{\frac{1}{3}})]\\\\

\frac{2}{3}\{[\log({a^{\frac{9}{2}})+\log(b^{\frac{1}{2}})]-[\log({b^{\frac{7}{3}})+(\log(c^{\frac{1}{3}})]\}

\frac{2}{3}(\frac{9}{2}\log a+\frac{1}{2}\log b-\frac{7}{3}\log b-\frac{1}{3}\log c)

\frac{2}{3}(\frac{27\log a+3\log b-14\log b-2\log c}{6})

\frac{27\log a-11\log b- 2\log c}{9}\\\\

Perguntas interessantes