Matemática, perguntado por kjmaneiro, 1 ano atrás

Resolva

\log_5(0,000064)= \\  \\ \log_{49} \sqrt[3]{7} =


kjmaneiro: Com calculos.

Soluções para a tarefa

Respondido por ArthurPDC
1
a)
\log_5(0,000064)=\log_5\left(\dfrac{64}{1000000}\right)=\log_5\left(\dfrac{2^6}{10^6}\right)\\\\
\log_5(0,000064)=\log_5\left(\dfrac{2^6}{(2\cdot5)^6}\right)=\log_5\left(\dfrac{2^6}{2^6\cdot5^6}\right)\\\\
\log_5(0,000064)=\log_5\left(\dfrac{1}{5^6}\right)\\\\
\log_5(0,000064)=\log_5(5^{-6})~~~\overline{\underline{\text{Propriedade: }\log_b(a^N)=N\cdot\log_b a}}\\\\
\log_5(0,000064)=-6\cdot \log_5(5)\\\\
\log_5(0,000064)=-6\cdot1\\\\
\boxed{\log_5(0,000064)=-6}


b)
\log_{49}(\sqrt[3]{7})=\log_{49}(7^{\frac{1}{3}})~~~\overline{\underline{\text{Propriedade: }\log_b(a^N)=N\cdot\log_b a}}\\\\
\log_{49}(\sqrt[3]{7})=\dfrac{1}{3}\cdot\log_{49}(7)\\\\
\log_{49}(\sqrt[3]{7})=\dfrac{1}{3}\cdot\log_{(7^2)}(7)~~~\overline{\underline{\text{Propriedade: }\log_{(b^N)}(a)=\dfrac{1}{N}\cdot\log_b a}} \\\\
\log_{49}(\sqrt[3]{7})=\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot\log_7(7)\\\\
\log_{49}(\sqrt[3]{7})=\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot1\\\\
\boxed{\log_{49}(\sqrt[3]{7})=\dfrac{1}{6}}

kjmaneiro: Perfeito!!! Muito obrigada!!!!
ArthurPDC: De nada!
Perguntas interessantes