Matemática, perguntado por brainlyrespostasssg, 5 meses atrás

resolva problemas com triângulos (avançado)

Determine o valor de x:

Anexos:

brainlyrespostasssg: triângulo semelhante *

Soluções para a tarefa

Respondido por VitiableIndonesia
1

Triângulo ABC

 {x}^{2}  =  {3}^{2}  +  {3}^{2}  \\  {x}^{2} =  1  \times  {3}^{2}   + 1 \times  {3}^{2}  \\  {x}^{2}  = (1 + 1) \times  {3}^{2}  \\  {x}^{2}  = 2 \times  {3}^{2}  \\  {x}^{2}  = 2 \times 9 \\  {x}^{2}  = 18 \\ x =  \sqrt{18}  \\ x =  \sqrt{9 \times 2}  \\ x = 3 \sqrt{2}

AC = 3 \sqrt{2}

Vamos descobrir o valor de x

Lembrando que CE = x

(3 \sqrt{2}  + x {)}^{2}  = (3 + x {)}^{2}  +  {13}^{2}  \\ (3 \sqrt{2} {)}^{2}    + 2 \times 3 \sqrt{2} x +  {x}^{2} = (3 + x {)}^{2}  +  {13}^{2}  \\ 9 \times 2 + 2 \times 3 \sqrt{2} x +  {x}^{2}  = (3 + x {)}^{2}  +  {13}^{2}  \\ 18 + 6 \sqrt{2} x +  {x}^{2}  = (3 + x {)}^{2}  +  {13}^{2}  \\ 18 + 6 \sqrt{2} x +  {x}^{2}  =  {3}^{2}  + 2 \times 3x +  {x}^{2}  +  {13}^{2}  \\ 18 + 6 \sqrt{2} x + x {}^{2}  = 9 + 6x +  {x}^{2}  +  {13}^{2} \\ 18 + 6 \sqrt{2}  x = 9 + 6x + 169 \\ 18 + 6 \sqrt{2} x = 178 + 6x \\ 6 \sqrt{2} x - 6x = 178 - 18 \\ 6 \sqrt{2} x - 6x = 160 \\  \frac{6 \sqrt{2} x - 6x}{2}  =  \frac{160}{2}  \\ 3 \sqrt{2} x - 3x = 80 \\ (3 \sqrt{2}  - 3)x = 80 \\  \boxed{x =  \frac{80}{3 \sqrt{2}  - 3} }

{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}} \\ \boxed{ \displaystyle\int_ \empty ^ \mathbb{C}     \frac{ - b \: ± \:  \sqrt{ {b}^{2} - 4 \times a \times c } }{2 \times a} d{ t } \boxed{ \boxed{ \mathbb{\displaystyle\Re}\sf{ \gamma  \alpha }\tt{ \pi}\bf{ \nabla}}}}  \\ {\boxed{ \color{blue} \boxed{ 24 |10|22  }}}{\boxed{ \color{blue} \boxed{Espero \:  ter  \: ajudado \: ☆}}}


VitiableIndonesia: {\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}} \\ \boxed{ \displaystyle\int_ \empty ^ \mathbb{C}     \frac{ - b \: ± \:  \sqrt{ {b}^{2} - 4 \times a \times c } }{2 \times a} d{ t } \boxed{ \boxed{ \mathbb{\displaystyle\Re}\sf{ \gamma  \alpha }\tt{ \pi}\bf{ \nabla}}}}
VitiableIndonesia: Tem meu nome, se quiser usar no final de sua resposta pode trocar
VitiableIndonesia: de nada
Perguntas interessantes