Matemática, perguntado por miscileneduarte112, 4 meses atrás

Resolva:

O valor de uma viatura militar decresce linearmente com o tempo. Se hoje ela custa 50 mil
dólares e daqui a 5 anos vale apenas 10 mil dólares, qual seria o valor da viatura daqui a três

anos?


a) 26 mil


b) 30 mil


c) 24 mil


d) 32 mil


e) 34 mil

Soluções para a tarefa

Respondido por desista0404
5

Resposta: Solução: questão de matemática da ESA (Escola de Sargentos das Armas) do Concurso de Admissão 2021 aos Cursos de Formação e Graduação de Sargentos 2022 – 23 . Prova aplicada no dia 03/10/2021.

Existem diferentes formas de resolvermos essa questão, vamos resolvê-la calculando o coeficiente angular desta reta decrescente, ou seja, a sua taxa de decaimento.  Como o decaimento é linear, podemos fazer o seguinte:

Ano 0 vale 50 mil  

Ano 5 vale 10 mil

A taxa de decaimento anual é de: (Valor Final - Valor inicial)/(Ano Final - Ano Inicial)

= (10 - 50)/(5-0) = -40/5 = -8.

Então, a cada ano transcorrido, a viatura perde 8 mil dólares, após três anos ela terá perdido 3 x 8 = 24 mil dólares.  Como iniciou valendo 50 mil, então 50 - 24 = 26 mil dólares.

Alternativa correta é a letra a).

Explicação passo a passo: C... o... f... i... a... n... o... p... a... i


miscileneduarte112: obg
Respondido por andre19santos
1

O valor da viatura daqui a três anos seria de 26 mil reais, alternativa A.

Equações do primeiro grau

Em equações do primeiro grau, o expoente da variável é sempre igual a 1. Esse tipo de equação é dado na forma reduzida y = ax + b, onde a e b são os coeficientes angular e linear, respectivamente.

Se o valor decresce linearmente, podemos escrever o valor como uma função do primeiro grau onde o valor inicial é b:

y = ax + 5000

Em 5 anos (x = 5), teremos:

10000 = 5a + 50000

5a = -40000

a = -8000

Daqui a três anos, o valor dessa viatura é:

y = -8000x + 50000

y = -8000·3 + 50000

y = 26 mil

Leia mais sobre equações do primeiro grau em:

https://brainly.com.br/tarefa/41102418

#SPJ2

Anexos:
Perguntas interessantes