Resolva o sistema:
x-2y+3z=0
-2x+5y-3z=1
-x+3y-2z=5
90 pontos!
Soluções para a tarefa
x-2y+3z=0 (I)
-2x+5y-3z=1 (II)
-x+3y-2z=5 (III)
Vamos somar membro a membro:
(I) + (III):
0 + y + z = 5
y + z = 5 ---> y = 5 - z (IV)
Vamos multiplicar (I) por 2:
x-2y+3z=0 (I) (*2)
2x - 4y + 6z = 0 (V)
Vamos somar membro a membro:
(V) + (II):
0 + y + 3z = 1
y + 3z = 1 (VI)
Como de (IV) y = 5 - z vamos substituir isso em (VI):
5-z + 3z = 1
2z + 5 = 1
2z = -4
z = -2
Como y = 5 - z ---> y = 5-(-2) = 7 ---> y = 7
Substituindo y=7 e z=-2 em (I) teremos:
x-2y+3z=0
x -2*(7) + 3*(-2) = 0
x - 14 - 6 = 0
x - 20 = 0
x = 20
Portanto:
x = 20
y = 7
z = -2
Solução => S = (20,7,-2)
x - 2y + 3z = 0................=> - 3z = x - 2y............(troca -3z na 2ª)
- 2x + 5y - 3z = 1.................=> - 2x + 5y + x - 2y = 1....=> - x + 3y = 1.(tr. na 3ª)
- x + 3y - 2z = 5.............=> 1 - 2z = 5...=> - 2z..= 5 - 1 = 4...=> z = - 2
Temos: x - 2y = - 3z....=> x - 2y = - 3 .(- 2)...=> x - 2y = 6....=> x = 6 + 2y
Temos: - x + 3y = 1....=> - ( 6 + 2y) + 3y = 1
...........................................- 6 - 2y + 3y = 1
........................................... y = 1 + 6.............=> y = 7
x = 6 + 2y....=> x = 6 + 2 . 7 = 6 + 14..........=> x = 20
Resposta: x = 20............Solução: S = {(20, 7, - 2)}
.................. y = 7
.................. z = - 2
Verificação no sistema dado:
.....x - 2y + 3z = 0...=> 20 - 2.7 + 3.(-2) = 20 - 14 - 6 = 20 - 20 = 0
....-2x + 5y + -3z = 1 => -2.20 + 5.7 - 3.(-2) = - 40 + 35 + 6 = -40 + 41 = 1
....- x + 3y - 2z = 5...=> - 20 + 3.7 - 2.(-2) = - 20 + 21 + 4 = - 20 + 25 = 5