Matemática, perguntado por Gu1lhermeCosta, 1 ano atrás

Resolva o sistema a seguir pelos métodos da adição e substituição


7x - 4y =22
2x - 4y = -8

Soluções para a tarefa

Respondido por jotão
2
Resolução:
 \left \{ {{7x-4y=22} \atop {2x-4y=-8}} \right. .(-1)

 \left \{ {{-7x+4y=-22} \atop {2x-4 \neqy=-8}} \right.

-5x = -30

x= \frac{30}{5}

x=6

2x-4y=-8

2.6-4y=-8

-4y=-20

y=5

S = {6,5}

bons estudos:





Gu1lhermeCosta: Qual metodo que voce usou, Substituição ou adição ?
jotão: adição; multipliquei por (-1) para anular o y;
Respondido por naldanycolas
1

Resposta:

Módulo ou valor absoluto de um número estão associados a sua distância do ponto de origem, observe a representação a seguir:

 

Percebemos que a distância entre os números é a mesma, dessa forma dizemos que o valor absoluto dos números – 4 e + 4, indicados por |– 4| e |+ 4|, será 4.

O módulo ou valor absoluto de um número x pode ser indicado pelo próprio x, se x é positivo ou nulo, e o simétrico de x, se x é negativo. Observe a conclusão geral:

 

Exemplos

a) |+3| = 3 e |–3| = –(–3) = 3

b) |10| = 10 e |–10| = –(–10) = 10

c) |x – 4| =

x – 4, se x – 4 ≥ 0, ou seja, x ≥ 4

– (x – 4), se x – 4 < 0, ou seja, x < 4

Equações Modulares

Chamamos de equações modulares as equações em que aparecem módulos de expressões que contêm incógnita.

Exemplos de equações modulares:

|x| = 7

|x + 6| = x + 6

|x – 3| + 4x = 7

|x + 2| = 4

Formas de resolução

Exemplo 1

|x + 2| = 4

Condições:

x + 2 = 4 ou x + 2 = – 4

Resolução:

x + 2 = 4 → x = 4 – 2 → x = 2

x + 2 = – 4 → x = – 4 – 2 → x = – 6

S = {–6; 2}

Exemplo 2

 

|4x – 8| = x + 1

Condições:

|4x – 8| ≥ 0, dessa forma a equação só é possível se x + 1 ≥ 0, x ≥ –1.

|4x – 8| = x + 1

4x – 8 = x + 1 ou 4x – 8 = – (x + 1)

Resolução:

4x – 8 = x + 1 → 4x – x = 1 + 8 → 3x = 9 → x = 9/3 → x = 3

4x – 8 = – (x + 1) → 4x – 8 = – x – 1 → 4x + x = – 1 + 8 → 5x = 7 → x = 7/5

Verifique que x = 3 e x = 7/5, satisfazem a condição x ≥ – 1, portanto o conjunto solução é {7/5; 3}

Exemplo 3

|x + 1| = |x – 3|

x + 1 = x – 3 → x – x = – 3 – 1 → 0x = – 4 (impossível)

x + 1 = – (x – 3) → x + 1 = – x +3 → x + x = 3 – 1 → 2x = 2 → x = 1

Solução: {1}

Exemplo 4

|x² – 5x + 6| = 2

x² – 5x + 6 = 2 → x² – 5x + 6 – 2 = 0 → x² – 5x + 4 = 0 (Bháskara: possui duas raízes reais)

x’ = 1 e x” = 4

x² – 5x + 6 = – 2 → x² – 5x + 6 + 2 = 0 → x² – 5x + 8 = 0 (Bháskara: não possui raízes reais)

Solução: {1,4}

Explicação passo-a-passo:

Perguntas interessantes