Matemática, perguntado por mariagonzaga, 1 ano atrás

Resolva o sistema:

100^x . √10^y = 10
0,1^x . 0,01^y/2 = 0,01

Soluções para a tarefa

Respondido por korvo
3
Olá Maria,

use as propriedades da exponenciação..

\begin{cases}100^x\cdot\left( \sqrt{10}\right)^y=10\\
(0,1)^x\cdot(0,01)^{ \tfrac{y}{2} }=0,01 \end{cases}\\\\\\
\Rightarrow\begin{cases}(10^2)^x\cdot\left(10^{ \tfrac{y}{2}\right)=10^1\\
\left( \dfrac{1}{10}\right)^x\cdot\left( \dfrac{1}{100}\right)^{ \tfrac{y}{2} }= \dfrac{1}{100}  \end{cases}\\\\\\
\Rightarrow\begin{cases}10^{2x}\cdot10^{ \tfrac{y}{2} }=10^1\\
(10^{-1})^x\cdot(10^{-2})^{ \tfrac{y}{2} }=10^{-2}\end{cases}


\\\\\\
\Rightarrow\begin{cases}\not10^{2x+ \tfrac{y}{2} }=\not10^1~~(i)\\
\not10^{-x-y}=\not10^{-2}~~(ii)\end{cases}\\\\\\
\Rightarrow\begin{cases}2x+ \dfrac{y}{2}=1~~(i)\\
-x-y=-2~~(ii)~~(multiplica~por~2~e~soma)\end{cases}\\\\\\
\Rightarrow\begin{cases}~~2x+ \dfrac{y}{2}=1~~(i)\\
-2x-2y=-4~~(ii) \end{cases}\\
~~~~~--------\\
~~~~~~~~~~~~- \dfrac{3}{2}y=-3\\\\
~~~~~~~~~~~~~~~~y=-2

2x+ \dfrac{y}{2}=1\\\\
2x+ \dfrac{-2}{~~2}=1\\\\
2x+(-1)=1\\
2x-1=1\\
2x=1+1\\
2x=2\\\\
x= \dfrac{2}{2}\\\\
x=1

Portanto a solução do sistema de equações exponenciais acima é:

\huge\boxed{S_{x,y}=\{(1,-2)\}} 


korvo: entendeu???
Perguntas interessantes