Resolva o seguinte sistema linear
x + y + 2z = 9
2x + 4y – 3z = 1
3x + 6y – 5z = 0
Soluções para a tarefa
Explicação passo a passo:
1x + 1y + 2z = 9 >>>>>>>>>>>>>>1
2x + 4y – 3z = 1>>>>>>>>>>>>>>>2
3x + 6y – 5z = 0>>>>>>>>>>>>>>3
-----------------------------
CALCULANDO >>>>>>>>>>>>>>>1 E >>>>>>>>>>2
1x + 1y + 2z = 9 >>>>>>>>>>>1 ( VEZES - 2)
2x + 4y – 3z = 1 >>>>>>>>>>> 2
-----------------------------------------------------------------------------------
- 2X - 2Y -4Z = - 18
2X + 4Y - 3Z = 1
-------------------------------------------------------------------------------------------
// 2Y - 7Z = -17 >>>>>>>>>>4
CALCULANDO A >>>>>2 COM A >>>>>>3
2x + 4y – 3z = 1>>>>>>>>>>>>>>>2 ( VEZES -3 )
3x + 6y – 5z = 0>>>>>>>>>>>>>>3 ( VEZES 2 )
------------------------------------------------------------
- 6X - 12Y + 9Z = - 3>>>>>>>>>>>2
6X + 12Y - 10Z = 0 >>>>>>>>>>3
---------------------------------------------------------------
// // - Z = - 3
Z = 3 >>>>>>>>>RESPOSTA
EM>>>>>>>>>>>>4 ACIMA SUBSTITUIR Z POR 3
2Y - 7Z = - 17
2Y - 7 * 3 = - 17
2Y - 21 =- 17
2Y = -17 + 21
2Y = +4
Y = 4/2 = 2 >>>>>>RESPOSTA
SUBSTITUINDO EM >>>>>>1 OS VALORES DE Y POR 2 E Z POR 3
X + Y + 2Z = 9
X + 2 + 2 ( 3 ) = 9
X +2 + 6 = 9
X + 8 = 9
X = 9 - 8
X = 1 >>>>>>RESPOSTA