Matemática, perguntado por Jiminee, 1 ano atrás

resolva o limite
\lim_{x \to \-1/2} \frac{x^{2}+ x+ 2}{2x^{2} +5x+2}

Soluções para a tarefa

Respondido por marcelo7197
0

Explicação passo-a-passo:

Cálculo do Limite:

\mathsf{\[\lim_{x~\rightarrow~-\dfrac{1}{2}} \dfrac{\mathsf{x^2+x+2}}{\mathsf{2x^2+5x+2}} \] } \\

\mathsf{=\dfrac{\Big(-\dfrac{1}{2}\Big)^2-\dfrac{1}{2}+2}{2.\Big(-\dfrac{1}{2}\Big)^2+5.\Big(-\dfrac{1}{2}\Big)+2} } \\

\mathsf{=~\dfrac{\dfrac{1}{4}+\dfrac{3}{2}}{\dfrac{1}{2}-\dfrac{1}{2} } } \\

\mathsf{=~\dfrac{\dfrac{1}{4}+\dfrac{6}{4}}{0} } \\

\mathsf{=~\dfrac{\dfrac{7}{4}}{0} =~+\infty } \\

Espero ter ajudado bastante!)

Respondido por CyberKirito
0

\lim_{x \to \  - \frac{1}{2} } \frac{ {x}^{2} + x + 2}{2 {x}^{2} + 5x + 2} \\  \frac{ {( -  \frac{1}{2} )}^{2}  -  \frac{1}{2}  + 2}{2. {( -  \frac{1}{2} )}^{2} + 5( -  \frac{1}{2}) + 2 }

 \frac{ \frac{1}{4} -  \frac{1}{2}  + 2}{2.( \frac{1}{4} )  -  \frac{5}{2} + 2}  \\  =  \frac{ \frac{1 - 2 + 8}{4} }{ \frac{2 - 10 + 8}{4} }

 \frac{ \frac{7}{4} }{0} = \infty

Perguntas interessantes