resolva integral por partes ∫ x In(3x) dx
Soluções para a tarefa
Respondido por
0
Resolver a integral
![\int{x\mathrm{\,\ell n}\left(3x \right )\,dx} \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}](https://tex.z-dn.net/?f=%5Cint%7Bx%5Cmathrm%7B%5C%2C%5Cell+n%7D%5Cleft%283x+%5Cright+%29%5C%2Cdx%7D)
por partes.
![\begin{array}{ll} u=\mathrm{\ell n}\left(3x \right )\;\;&\;\;dv=x\,dx\\ \\ du=\dfrac{1}{\diagup\!\!\!\! 3x}\cdot \diagup\!\!\!\! 3\,dx\;\;&\;\;v=\dfrac{x^{2}}{2} \end{array} \begin{array}{ll} u=\mathrm{\ell n}\left(3x \right )\;\;&\;\;dv=x\,dx\\ \\ du=\dfrac{1}{\diagup\!\!\!\! 3x}\cdot \diagup\!\!\!\! 3\,dx\;\;&\;\;v=\dfrac{x^{2}}{2} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bll%7D+u%3D%5Cmathrm%7B%5Cell+n%7D%5Cleft%283x+%5Cright+%29%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3Bdv%3Dx%5C%2Cdx%5C%5C+%5C%5C+du%3D%5Cdfrac%7B1%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+3x%7D%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+3%5C%2Cdx%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3Bv%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D+%5Cend%7Barray%7D)
![\int{u\,dv}=uv-\int{v\,du}\\ \\ \\ \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\int{\dfrac{x^{2}}{2}\cdot \dfrac{1}{x}\,dx}\\ \\ \\ \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\dfrac{1}{2}\int{x\,dx}\\ \\ \\ \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\dfrac{1}{2}\cdot\dfrac{x^{2}}{2}+C\\ \\ \\ \boxed{\begin{array}{c} \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\dfrac{x^{2}}{4}+C \end{array}} \int{u\,dv}=uv-\int{v\,du}\\ \\ \\ \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\int{\dfrac{x^{2}}{2}\cdot \dfrac{1}{x}\,dx}\\ \\ \\ \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\dfrac{1}{2}\int{x\,dx}\\ \\ \\ \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\dfrac{1}{2}\cdot\dfrac{x^{2}}{2}+C\\ \\ \\ \boxed{\begin{array}{c} \int{x\mathrm{\,\ell n}\left(3x \right )\,dx}=\dfrac{x^{2}}{2}\cdot \mathrm{\ell n}\left(3x \right )-\dfrac{x^{2}}{4}+C \end{array}}](https://tex.z-dn.net/?f=%5Cint%7Bu%5C%2Cdv%7D%3Duv-%5Cint%7Bv%5C%2Cdu%7D%5C%5C+%5C%5C+%5C%5C+%5Cint%7Bx%5Cmathrm%7B%5C%2C%5Cell+n%7D%5Cleft%283x+%5Cright+%29%5C%2Cdx%7D%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5Ccdot+%5Cmathrm%7B%5Cell+n%7D%5Cleft%283x+%5Cright+%29-%5Cint%7B%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5Ccdot+%5Cdfrac%7B1%7D%7Bx%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+%5Cint%7Bx%5Cmathrm%7B%5C%2C%5Cell+n%7D%5Cleft%283x+%5Cright+%29%5C%2Cdx%7D%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5Ccdot+%5Cmathrm%7B%5Cell+n%7D%5Cleft%283x+%5Cright+%29-%5Cdfrac%7B1%7D%7B2%7D%5Cint%7Bx%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+%5Cint%7Bx%5Cmathrm%7B%5C%2C%5Cell+n%7D%5Cleft%283x+%5Cright+%29%5C%2Cdx%7D%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5Ccdot+%5Cmathrm%7B%5Cell+n%7D%5Cleft%283x+%5Cright+%29-%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%2BC%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Cint%7Bx%5Cmathrm%7B%5C%2C%5Cell+n%7D%5Cleft%283x+%5Cright+%29%5C%2Cdx%7D%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5Ccdot+%5Cmathrm%7B%5Cell+n%7D%5Cleft%283x+%5Cright+%29-%5Cdfrac%7Bx%5E%7B2%7D%7D%7B4%7D%2BC+%5Cend%7Barray%7D%7D)
por partes.
Perguntas interessantes
História,
1 ano atrás
Inglês,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Geografia,
1 ano atrás