Matemática, perguntado por MilenaRM, 1 ano atrás

Resolva essa equação biquadrada
4x⁴ - 10x² + 9 = 0


Mkse: ?????é isso MESMO
Mkse: 4x⁴ é isso???
MilenaRM: sim, por isso que eu to com dúvida, equação biquadrada é fácil, só que até a menina mais nerd da minha sala não entendeu
Mkse: então de UMA olhada na RESOLUÇÃO
MilenaRM: não tem resolução, é trabalho valendo nota
Mkse: ENTÃO vou por uma resposta BEM legal para seu trabalho
MilenaRM: só vai kk

Soluções para a tarefa

Respondido por solkarped
2

✅ Após resolver os cálculos, concluímos que o conjunto solução da referida equação biquadrada é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \{-3,\,-1,\,1,\,3\}\:\:\:}}\end{gathered}$}

Seja a equação biquadrada:

        \Large\displaystyle\text{$\begin{gathered} x^{4} - 10x^{2} + 9 = 0\end{gathered}$}

Sabemos que esta equação foi gerada a partir da seguinte função biquadrada:

     \Large\displaystyle\text{$\begin{gathered} f(x) = x^{4} - 10x^{2} + 9\end{gathered}$}

Cujos coeficientes são:

                 \Large\begin{cases} a = 1\\b = -10\\c = 9\end{cases}

Para calcular as raízes da função biquadrada devemos fazer:

    \Large\displaystyle\text{$\begin{gathered} x = \pm\sqrt{\frac{-b\pm\sqrt{b^{2} - 4ac}}{2a}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{-(-10)\pm\sqrt{(-10)^{2} - 4\cdot1\cdot9}}{2\cdot1}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{100 - 36}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{64}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm8}{2}}\end{gathered}$}

Encontrando as raízes, temos:

   \LARGE\begin{cases} x' = -\sqrt{\frac{10 + 8}{2}} = -\sqrt{\frac{18}{2}} = -\sqrt{9} = -3\\x'' = -\sqrt{\frac{10 - 8}{2}} = -\sqrt{\frac{2}{2}} = -\sqrt{1} = -1\\x''' = \sqrt{\frac{10 - 8}{2}} = \sqrt{\frac{2}{2}} = \sqrt{1} = 1\\x'''' = \sqrt{\frac{10 + 8}{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3\end{cases}

✅ Portanto, o conjunto solução desta função é:

     \Large\displaystyle\text{$\begin{gathered} S = \{-3,\,-1,\,1,\,3\}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/13468761
  2. https://brainly.com.br/tarefa/48160763
  3. https://brainly.com.br/tarefa/47188717
  4. https://brainly.com.br/tarefa/52080516
  5. https://brainly.com.br/tarefa/52080530
  6. https://brainly.com.br/tarefa/52080880
  7. https://brainly.com.br/tarefa/52133431
  8. https://brainly.com.br/tarefa/52569560
  9. https://brainly.com.br/tarefa/17496264
  10. https://brainly.com.br/tarefa/25709140
  11. https://brainly.com.br/tarefa/7163873
  12. https://brainly.com.br/tarefa/7205971
  13. https://brainly.com.br/tarefa/18207882

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas interessantes