Matemática, perguntado por aliicee, 1 ano atrás

Resolva,em R, as inequações-quociente:
A) X-3/2x-1 > = 4
B)X+1/2x-1 < = 0

P.S. : Os simbolos > = e < = significa (Maior igual ou menor igual)
Pfv me ajudem!!!

Soluções para a tarefa

Respondido por Krikor
5
Resolver a inequação do tipo quociente

\mathtt{\dfrac{x-3}{2x-1}\le 4}\quad\quad\texttt{com }\mathtt{x\ne \dfrac{1}{2}}


Primeiro passamos todos os termos para o mesmo membro da desigualdade

\mathtt{\dfrac{x-3}{2x-1}-4\le 0}


E depois reduzimos os termos ao mesmo denominador

\mathtt{\dfrac{x-3}{2x-1}-\dfrac{4\cdot (2x-1)}{2x-1}\le 0}\\\\\\
\mathtt{\dfrac{x-3}{2x-1}-\dfrac{8x-4}{2x-1}\le 0}\\\\\\
\mathtt{\dfrac{x-3-(8x-4)}{2x-1}\le 0}\\\\\\
\mathtt{\dfrac{x-3-8x+4}{2x-1}\le 0}\\\\\\
\mathtt{\dfrac{-7x+1}{2x-1}\le 0}


Podemos dizer que temos

\mathtt{\dfrac{f(x)}{g(x)}\le 0}


Sendo

\mathtt{f(x)=-7x+1~~e~~g(x)=2x-1.}

__________


Agora vamos estudar os sinais de \mathtt{f} e \mathtt{g}

•   \mathtt{f(x)=-7x+1}


\mathtt{f(x)\geq 0}\\\\
\mathtt{-7x+1\geq 0}\\\\
\mathtt{-7x\geq -1}\\\\
\mathtt{x \leq \dfrac{1}{7}}


Portanto

\begin{cases} \mathtt{f(x)\geq 0}&amp;\texttt{se }\mathtt{x\leq 1/7}\\ \mathtt{f(x) \ \textless \  0}&amp;\texttt{se }\mathtt{x\ \textgreater \ 1/7 } \end{cases}

\begin{array}{cc} \mathtt{f(x)}~&amp;~\mathtt{\underline{++}\underset{1/7}{\circ}\underline{----}} \end{array}


•   \mathtt{g(x)=2x-1}


\mathtt{g(x)\geq 0}\\\\
\mathtt{2x-1\geq 0}\\\\
\mathtt{2x\geq 1}\\\\
\mathtt{x \ \textgreater \  \dfrac{1}{2}}


Portanto

\begin{cases} \mathtt{g(x)\geq 0}&amp;\texttt{se }\mathtt{x \geq 1/2}\\ \mathtt{g(x) \ \textless \  0}&amp;\texttt{se }\mathtt{x\ \textless \  1/2 } \end{cases}

\begin{array}{cc} \mathtt{g(x)}~&amp;~\mathtt{\underline{----}\underset{1/2}\bullet \underline{++}} \end{array}

__________


\begin{array}{cc} \mathtt{f(x)}~&amp;~\mathtt{\underline{++++}\underset{1/7}\bullet \underline{--------}} \end{array}\\\\
\begin{array}{cc} \mathtt{g(x)}~&amp;~\mathtt{\underline{----------}\underset{1/2}{\circ}\underline{++++}} \end{array}\\\\\\
\begin{array}{cc} \mathtt{\dfrac{f(x)}{g(x)}}~&amp;~\mathtt{\underline{----}\underset{1/7}\bullet\underline{++++}\underset{1/2}{\circ} \underline{----}} \end{array}


Obs: lembrando que \mathtt{x \neq 2} porque caso contrário o denominador será zero


Conjunto solução: \mathsf{S=[\frac{1}{7},\frac{1}{2}[}


===================


A segunda já é bem mais simples

\mathtt{\dfrac{x+1}{2x-1}\le 4}\quad\quad\texttt{com }\mathtt{x\ne \dfrac{1}{2}}


Para o numerador temos

\mathtt{x+1 \leq 0}\\\\
\mathtt{x\leq -1}\\\\


E para o denominador

\mathtt{2x-1 \leq 0}\\\\
\mathtt{2x \leq 1}\\\\
\mathtt{x \leq  \dfrac{1}{2} }


Fazendo a análise dos sinais

\begin{array}{cc} \mathtt{N}~&amp;~\mathtt{\underline{----}\underset{-1}\bullet \underline{++++++++}} \end{array}\\\\
\begin{array}{cc} \mathtt{D}~&amp;~\mathtt{\underline{--------}\underset{1/2}{\circ}\underline{++++}} \end{array}\\\\\\
\begin{array}{cc} \mathtt{Q}~&amp;~\mathtt{\underline{++++}\underset{-1}\bullet \underline{---}\underset{1/2}{\circ} \underline{++++}} \end{array}


Obs: novamente \mathtt{x \neq  \dfrac{1}{2}} senão o denominador ficará 0


Conjunto solução: \mathtt{S=[-1,\dfrac{1}{2}[}


Bons estudos no Brainly! =)

Perguntas interessantes