resolva em R as inequações:
Anexos:
Soluções para a tarefa
Respondido por
14
a)
x² + 3x - 10 > 0
trata-se de uma parábola côncava para cima de raízes -5 e 2
então para satisfazer a imposição:
V = {x ∈ R / x < -5 ∨ x > 2}
b)
-2x² + 7x - 3 ≥ 0
trata-se de uma parábola côncava para baixo de raízes 1/2 e 3
então para satisfazer imposição
V = {x ∈ R / 1/2 ≤ x ≤ 3}
c)
4x² - 12x + 9 ≤ 0
trata-se de uma parábola côncava para cima de raízes iguais à 3/2
então para satisfazer a imposição
V = { 0 } (somente "0" satisfaz!!)
d)
_3x²_ - _3x_ ≤ _2x_ - 1
5 2 5
m.m.c ⇒ 10
6x² - 15x ≤ 4x - 10
6x² - 19x + 10 ≤ 0
trata-se de uma parábola côncava para cima de raízes 5/2 e 3/2
então para satisfazer imposição
V = {x ∈ R / 3/2 ≤ x ≤ 5/2}
e)
_x²_ + x > _x²_ + _2x_ + _5_
3 2 3 6
m.m.c ⇒ 6
2x² + 6x > 3x² + 4x + 5
x² - 2x + 5 < 0
trata-se de uma parábola côncava para cima que não tem raízes reais logo não corta o eixo "x"
então para satisfazer a imposição NÃO existe valor real
V = ∅
x² + 3x - 10 > 0
trata-se de uma parábola côncava para cima de raízes -5 e 2
então para satisfazer a imposição:
V = {x ∈ R / x < -5 ∨ x > 2}
b)
-2x² + 7x - 3 ≥ 0
trata-se de uma parábola côncava para baixo de raízes 1/2 e 3
então para satisfazer imposição
V = {x ∈ R / 1/2 ≤ x ≤ 3}
c)
4x² - 12x + 9 ≤ 0
trata-se de uma parábola côncava para cima de raízes iguais à 3/2
então para satisfazer a imposição
V = { 0 } (somente "0" satisfaz!!)
d)
_3x²_ - _3x_ ≤ _2x_ - 1
5 2 5
m.m.c ⇒ 10
6x² - 15x ≤ 4x - 10
6x² - 19x + 10 ≤ 0
trata-se de uma parábola côncava para cima de raízes 5/2 e 3/2
então para satisfazer imposição
V = {x ∈ R / 3/2 ≤ x ≤ 5/2}
e)
_x²_ + x > _x²_ + _2x_ + _5_
3 2 3 6
m.m.c ⇒ 6
2x² + 6x > 3x² + 4x + 5
x² - 2x + 5 < 0
trata-se de uma parábola côncava para cima que não tem raízes reais logo não corta o eixo "x"
então para satisfazer a imposição NÃO existe valor real
V = ∅
ketellyn4:
obg
Perguntas interessantes
Física,
10 meses atrás
Física,
10 meses atrás
Português,
10 meses atrás
Pedagogia,
1 ano atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás