Resolva, em R, a seguinte equação trigonométrica
Tg^2 X - tg x = 0
Soluções para a tarefa
Respondido por
2
tg² (x) - tg (x) = 0
Fazendo tg (x) = y, e aplicando a troca, temos:
y² - y = 0
Colocando y em evidência e encontrando as raízes:
y.(y - 1) = 0
y' = 0
y - 1 = 0
y" = 1
Como y = tg (x):
Logo:
tg (x) = 0
ou
tg (x) = 1
Não existe tangente de valor igual a 0, então, temos como resultado:
tg (x) = 1
x = arc tg (1) = 45º ou 225º
Os arcos cuja tangente vale 1 é o de 45º e 225º.
Portanto, o valor de x é 45º ou 225º.
Fazendo a substituição:
tg² (x) - tg (x) = 0
tg² (45º) - tg (45º) = 0
(1)² - 1 = 0
1 - 1 = 0
0 = 0
S = {45º, 225º}
Está provado!
Fazendo tg (x) = y, e aplicando a troca, temos:
y² - y = 0
Colocando y em evidência e encontrando as raízes:
y.(y - 1) = 0
y' = 0
y - 1 = 0
y" = 1
Como y = tg (x):
Logo:
tg (x) = 0
ou
tg (x) = 1
Não existe tangente de valor igual a 0, então, temos como resultado:
tg (x) = 1
x = arc tg (1) = 45º ou 225º
Os arcos cuja tangente vale 1 é o de 45º e 225º.
Portanto, o valor de x é 45º ou 225º.
Fazendo a substituição:
tg² (x) - tg (x) = 0
tg² (45º) - tg (45º) = 0
(1)² - 1 = 0
1 - 1 = 0
0 = 0
S = {45º, 225º}
Está provado!
Perguntas interessantes
Português,
9 meses atrás
História,
9 meses atrás
Contabilidade,
9 meses atrás
Matemática,
1 ano atrás
Português,
1 ano atrás