Matemática, perguntado por filipealexandre1, 1 ano atrás

resolva em R a inequação-quociente:
x^2-5x-14/-x^2+3x>=0

Soluções para a tarefa

Respondido por Krikor
3
Resolver a inequação-quociente

\mathtt{\dfrac{x^{2}-5x-14}{x^{2}+3x}\ge 0}\quad\quad\texttt{com }\mathtt{x\ne 0}\quad\quad\mathtt{x\ne -3}


Como o lado direito já está zerado analisar primeiro o numerador e depois denominador


Numerador

\mathtt{x^{2}-5x-14\geq 0}\\
\texttt{--------------}\\
\mathtt{x^{2}-5x-14=0}\\\\

\mathtt{S = 5\quad \qquad ~~~~|x'=-2}\\\\
\mathtt{P = -14\quad \qquad |x"=7}


Denominador

\mathtt{x^{2}+3x\geq 0}\\\\
\mathtt{x^{2}+3x= 0}\\\\
\mathtt{x\cdot (x+3)= 0}\\\\
\mathtt{|x'=-3}\\\\
\mathtt{|x"=0}


Obs: a análise dos sinais está no anexo


Como x tem o quociente tem que ser maior ou igual a 0, a solução será os trechos com sinal negativo e as raízes válidas, que não zeram o denominador

\mathtt{S=]-\infty ,-3[~\cup ~[-2,0[~\cup~[7,+\infty [}


Bons estudos no Brainly! =)

Anexos:
Perguntas interessantes