Resolva cada uma das equações:
a) 16x4 + 9 = 40x2
b) x4 - 3x2 - 4 = 0
c) √ (4x + 5) - x = 0
d) x + √ (2x2 + x - 2) = 0
Soluções para a tarefa
a) resolva a equaçao biquadrada 16x4+9=40x2
16x⁴ + 9 = 40x² ---------------igualar a equação em ZERO
16X⁴ + 9 - 40X² = 0-----------------arrumar a casa
16x⁴ - 40x² + 9 = 0 temos que fazer artificio tornar equação do 2º grau y = x²
16y² - 40x + 9 = 0
a = 16
b = - 40
c = 9
Δ = b² - 4ac
Δ = (-40)² - 4(16)(9)
Δ = + 1600 - 576
Δ = 1024-------------------------√1024 = 32
se
Δ > 0
então (baskara)
y = - b - + √Δ/2a
y' = -(-40) - √1024/2(16)
y' = + 40 - 32/32
y' = + 8/32
y' = 1/4
e
y" = -(-40) + √1024/2(16)
y" = + 40 + 32/32
y" = 72/32
y" = 9/4
se
y = x²
x² = y ------------------------para y' = 1/4 e y" = 9/4
x² = 1/4
x = - + √1/4
x = - 1/2
x = + 1/2
x² = y
x² = 9/4
x² - + √9/4
x = - 3/2
x = + 3/2
então a EQUAÇÃO BIQUADRADA temos 4 raízes
x¹ = -1/2
x² = + 1/2
x³ = -3/2
x⁴ = + 3/2
b)X⁴+ 3X² - 4 = 0
EQUAÇÃO BIQUADRADA
Vamos passar para uma equação do segundo grau fazendo
x⁴ = y² e x² = y
vamos achar 2 raizes y1 e y2
para achar as 4 raizes da biquadrada bastará extrair as raizes de y1 e y2 e acharemos x1,x2,x3,x4
y² + 3y - 4 = 0
delta = 9 + 16 = 25 ou+-V25 = +-5 ****
y = ( -3 +-5)/2
y1 = -8/2 = -4 *****
Y2 = 2/2 = 1 *****
X1=X2 = Y1 = +- V-4 ( NÃO HÁ RAIZES NO CAMPO REAL)
X3 = X4 = Y2 = +-v1 = +-1 ****
c)√(4x+5) - x =0
√(4x+5)=x
(√(4x+5))²=(x)²
(4x+5)=(x)²
4x+5=x²
0=x²-4x-5
delta=(-4)²-4(-5)(1)
delta=16+20
delta=36
x=(4+/-6)/2
x1=5
x2=-1
como a equação contém uma raiz a gente vai ter que testar os dois resultados na equação original pra ver se estão corretos
√(4(5)+5) - (5) =0
√(20+5) - (5) =0
√(25) - (5) =0
5 - (5) =0
0=0 verdadeiro
√(4(-1)+5) - (-1) =0
√(-4+5) +1 =0
√(1) +1 =0
1 +1 =0
2 =0 falso
resposta:x=5
d)x+√(2x²+x-2)=0
x=-√(2x²+x-2)
x²=[-√(2x²+x-2)]²
x²=2x²+x-2
x+x²-2=0
x'=[-1+(1+8)¹/²]/2=1
x"=[-1-(1+8)¹/²]/2=-2
Se x=1
x+√(2x²+x-2)=0
1+√1=0 OK!!!
Se x=-2
-2+√(2(-2)²-2-2)=0
-2+√(4)=0 OK!!!
Resp.: {1, -2}