Matemática, perguntado por carvalhorenan71, 8 meses atrás

Resolva cada equação abaixo, aplicando a ideia dos exemplos acima
pfv me ajudem

a) 13.x^2=100
b) 16.x^2-1225=0
c) 14.x^2=25
d) 17.10x^2-9=481
e) 15.2x^2-162=0
f) 18.x^2+13=94​

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

a)

\sf 13x^2=100

\sf x^2=\dfrac{100}{13}

\sf x=\pm\sqrt{\dfrac{100}{13}}

\sf x'=\dfrac{10}{\sqrt{13}}

\sf x'=\dfrac{10}{\sqrt{13}}\cdot\dfrac{\sqrt{13}}{\sqrt{13}}

\sf \red{x'=\dfrac{10\sqrt{13}}{13}}

\sf x"=\dfrac{-10}{\sqrt{13}}

\sf x"=\dfrac{-10}{\sqrt{13}}\cdot\dfrac{\sqrt{13}}{\sqrt{13}}

\sf \red{x"=\dfrac{-10\sqrt{13}}{13}}

O conjunto solução é \sf S=\Big\{\dfrac{-10\sqrt{13}}{13},\dfrac{10\sqrt{13}}{13}\Big\}

b)

\sf 16x^2-1225=0

\sf 16x^2=1225

\sf x^2=\dfrac{1225}{16}

\sf x=\pm\sqrt{\dfrac{1225}{16}}

\sf \red{x'=\dfrac{35}{4}}

\sf \red{x"=\dfrac{-35}{4}}

O conjunto solução é \sf S=\Big\{\dfrac{-35}{4},\dfrac{35}{4}\Big\}

c)

\sf 14x^2=25

\sf x^2=\dfrac{25}{14}

\sf x=\pm\sqrt{\dfrac{25}{14}}

\sf x'=\dfrac{5}{\sqrt{14}}

\sf x'=\dfrac{5}{\sqrt{14}}\cdot\dfrac{\sqrt{14}}{\sqrt{14}}

\sf \red{x'=\dfrac{5\sqrt{14}}{14}}

\sf x"=\dfrac{-5}{\sqrt{14}}

\sf x"=\dfrac{-5}{\sqrt{14}}\cdot\dfrac{\sqrt{14}}{\sqrt{14}}

\sf \red{x"=\dfrac{-5\sqrt{14}}{14}}

O conjunto solução é \sf S=\Big\{\dfrac{-5\sqrt{14}}{14},\dfrac{5\sqrt{14}}{14}\Big\}

d)

\sf 17\cdot10x^2-9=481

\sf 170x^2=481+9

\sf 170x^2=490

\sf x^2=\dfrac{490}{170}

\sf x^2=\dfrac{49}{17}

\sf x=\pm\sqrt{\dfrac{49}{17}}

\sf x'=\dfrac{7}{\sqrt{17}}

\sf x'=\dfrac{7}{\sqrt{17}}\cdot\dfrac{\sqrt{17}}{\sqrt{17}}

\sf \red{x'=\dfrac{7\sqrt{17}}{17}}

\sf x"=\dfrac{-7}{\sqrt{17}}

\sf x"=\dfrac{-7}{\sqrt{17}}\cdot\dfrac{\sqrt{17}}{\sqrt{17}}

\sf \red{x"=\dfrac{-7\sqrt{17}}{17}}

O conjunto solução é \sf S=\Big\{\dfrac{-7\sqrt{17}}{17},\dfrac{7\sqrt{17}}{17}\Big\}

e)

\sf 15\cdot2x^2-162=0

\sf 30x^2=162

\sf x^2=\dfrac{162}{30}

\sf x^2=\dfrac{81}{15}

\sf x=\pm\sqrt{\dfrac{81}{15}}

\sf x'=\dfrac{9}{\sqrt{15}}

\sf x'=\dfrac{9}{\sqrt{15}}\cdot\dfrac{\sqrt{15}}{\sqrt{15}}

\sf x'=\dfrac{9\sqrt{15}}{15}

\sf \red{x'=\dfrac{3\sqrt{15}}{5}}

\sf x"=\dfrac{-9}{\sqrt{15}}

\sf x"=\dfrac{-9}{\sqrt{15}}\cdot\dfrac{\sqrt{15}}{\sqrt{15}}

\sf x"=\dfrac{-9\sqrt{15}}{15}

\sf \red{x"=\dfrac{-3\sqrt{15}}{5}}

O conjunto solução é \sf S=\Big\{\dfrac{-3\sqrt{15}}{5},\dfrac{3\sqrt{15}}{5}\Big\}

f)

\sf 18x^2+13=94

\sf 18x^2=94-13

\sf 18x^2=81

\sf x^2=\dfrac{81}{18}

\sf x^2=\dfrac{9}{2}

\sf x=\pm\sqrt{\dfrac{9}{2}}

\sf x'=\dfrac{3}{\sqrt{2}}

\sf x'=\dfrac{3}{\sqrt{2}}\cdot\dfrac{\sqrt{2}}{\sqrt{2}}

\sf \red{x'=\dfrac{3\sqrt{2}}{2}}

\sf x"=\dfrac{-3}{\sqrt{2}}

\sf x"=\dfrac{-3}{\sqrt{2}}\cdot\dfrac{\sqrt{2}}{\sqrt{2}}

\sf \red{x"=\dfrac{-3\sqrt{2}}{2}}

O conjunto solução é \sf S=\Big\{\dfrac{-3\sqrt{2}}{2},\dfrac{3\sqrt{2}}{2}\Big\}


gleicefcorreia: ola
gleicefcorreia: vc poderia me ajudar
gleicefcorreia: ??
gleicefcorreia: Paulo
gleicefcorreia: é urgente
Perguntas interessantes