Matemática, perguntado por camilaviana7, 1 ano atrás

Resolva as seguintes inequações
a)(x-4)(x+5)>0
b)(x+3)(x-1)<0

Soluções para a tarefa

Respondido por PauloLuis
1
Tenhamos em mente a seguinte coisa:

(x + a).(x + b) = x² + x.(a + b) + ab

Ou seja, isso sempre nos dará uma equação de segundo grau, mas vamos visualizar uma coisa simples, nós sabemos que as raízes da equação de segundo grau são os valores para quais o x faz com que a função retorne o valor de y igual a 0, certo? Visto que y = ax² + bx + c.

Agora, vamos ver isso:

a)

(x - 4)(x + 5) > 0

Se x - 4 for 0, nós vamos ter que toda essa equação "(x - 4).(x + 5)" será 0, já que qualquer coisa multiplicada por 0, vale 0, o mesmo para x + 5, então vamos fazer isso:

x - 4 = 0
x = 4

x + 5 = 0
x = -5

Sabemos então que para os valores x = 4 e x = -5 nós teremos tudo igual a 0, mas nós queremos algo maior que 0 já que a inequação é "(x - 4).(x + 5) > 0"

Nós sabemos que como o x é positivo em ambos os lados da multiplicação teremos algo como x² na equação de segundo grau, logo, uma equação de segundo grau com concavidade voltada para cima.

Quando a função de segundo grau tem a concavidade voltada para cima o intervalo negativo dessa função fica entre as duas raízes, logo:

Para que (x - 4).(x + 5) > 0

x tem que ser > 4 ou < -5 já que no intervalo -5 < x < 4 ela é negativa.

S = {x e R/ x > 4 ou x < -5}

b)

Aplicando o mesmo raciocínio

x + 3 = 0
x = -3

x - 1 = 0
x = 1

Novamente, ambos os x são positivos então teremos certamente algo como x² na equação de segundo grau, tendo a > 0, concavidade voltada para cima. Como já dito no item anterior quando a concavidade é voltada para cima o intervalo entre as raízes é negativo.

No intervalo -3 < x < 1 é negativo, ou seja, menor que 0.

S = {x e R/ -3 < x < 1}
Perguntas interessantes