Resolva as seguintes expressões fracionárias:
a)[(3/4 + 2/5) – (1/2 – 1/5)] – 7/10=
b){(2/2)² + [1/3 – (1/2 – 1/3)²] – 5/12} – (1/3 – 1/4)=
c)[(1/3 – 2/7) + 2 1/7] – (4/3 – 5/21)=
d)(3/5 . 2/7) : (1/2 . 4/5)=
Soluções para a tarefa
a) [(3/4 + 2/5) – (1/2 – 1/5)] – 7/10 =
[(3/4 + 2/5) – (1/2 – 1/5)] – 7/10 = mmc(4,5) = 20 mmc(2,5) = 10
[(5.3/20 + 4.2/20) – (5.1/10 – 2.1/10)] – 7/10 =
[(15/20 + 8/20) – (5/10 – 2/10)] – 7/10 = Eliminar os parênteses
[23/20 – 3/10] – 7/10 = mmc (20,10) = 20
[1.23/20 – 2.3/10] – 7/10 =
[23/20 – 6/20] – 7/10 = Eliminar os colchetes
17/20 - 7/10 = mmc(20,10) = 20
1.17/20 - 2.7/20 =
17/20 - 14/20 =
3/20
b) {(2/2)² + [1/3 – (1/2 – 1/3)²] – 5/12} – (1/3 – 1/4) =
{4/4 + [1/3 – (1/2 – 1/3)²] – 5/12} – (1/3 – 1/4) = mmc(2,3) = 6 mmc(3,4) = 12
{4/4 + [1/3 – (3.1/6 – 2.1/6)²] – 5/12} – (4.1/12 – 3.1/12) =
{4/4 + [1/3 – (3/6 – 2/6)²] – 5/12} – (4/12 – 3/12) =
{4/4 + [1/3 – (1/6)²] – 5/12} – 1/12 =
{4/4 + [1/3 – 1/36] – 5/12} – 1/12 = mmc(3,36)= 36
{4/4 + [12.1/36 – 1.1/36] – 5/12} – 1/12 =
{4/4 + [12/36 – 1/36] – 5/12} – 1/12 =
{4/4 + 11/36 – 5/12} – 1/12 = mmc(4,36,12) = 288
{72.4/288 + 8.11/36 - 24.1/288} – 1/12 =
{296/288 + 88/288 - 24/288} – 1/12 =
360/288 – 1/12 = mmc(288,12) = 288
1.360/288 - 24.1/288 =
360/288 - 24/288 =
336/288 = simplificamos por 48
7/6
c) [(1/3 – 2/7) + 21/7] – (4/3 – 5/21) =
[(1/3 – 2/7) + 21/7] – (4/3 – 5/21) = mmc(3,7) = 21 mmc(3,21) = 21
[(7.1/21 – 3.2/21) + 21/7] – (7.4/21 – 1.5/21) =
[(7/21 – 6/21) + 21/7] – (28/21 – 5/21) =
[1/21 + 21/7] – 23/21 = mmc(21,7) = 21
[1.1/21 + 3.21/21] – 23/21 =
[1/21 + 63/21] – 23/21 =
64/21 – 23/21 =
41/21
d) (3/5 . 2/7) : (1/2 . 4/5) =
Multiplicamos numerador c/ numerador e denominador com denominador
6/35 : 4/10 =
Na divisão de frações, multiplicamos a primeira pela inversa da segunda
6/35 x 10/4 =
60/140 = simplificando por 20
3/7