Resolva as seguintes equações exponenciais 5^x-2-5^x+5^x+1=505
Soluções para a tarefa
5ˣ . 5⁻² - 5ˣ + 5ˣ . 5 = 505
5ˣ (5⁻² - 1 + 5) = 505
5ˣ (1/25 - 1 + 5) = 505
5ˣ . (1 - 25 + 125)/25 = 505
5ˣ . 101/25 = 505
5ˣ = 505 . 25/101
5ˣ = 5 . 25
5ˣ = 125
5ˣ = 5³
x = 3
O valor de x desta equação exponencial é igual a 3. Para resolver esta questão temos que entender o que é uma equação exponencial.
O que é uma equação exponencial?
Uma equação exponencial é uma equação na qual a incógnita é o expoente de um número, por exemplo:
2ˣ = 8
Para encontrar o valor de x temos que fazer com que a base dos dois lados da igualdade sejam iguais. No exemplo acima sabemos que 8 = 2³, portanto:
2ˣ = 2³
Para que a igualdade seja alcançada, x = 3. Nesta questão temos a seguinte equação:
Utilizando a propriedade da multiplicação de potências de mesma base podemos desmembrar cada potência:
Podemos colocar 5ˣ em evidência:
Passando 101/25 para a direita invertendo a fração:
Como 505 dividido por 101 é igual 5:
Analisando as potências do 5, sabemos que 5³ = 125, logo:
x = 3
Para saber mais sobre equações exponenciais, acesse:
https://brainly.com.br/tarefa/47762801
https://brainly.com.br/tarefa/182228
#SPJ2