Resolva as seguintes equações do 2º grau, identifique os coeficientes e determine as raízes se existir; através da fórmula de Bhaskara.
a) 2x² - 7x = 15 b) 4x² + 9 = 12x c) x² = x + 12 d) 2x² = -12x - 18 e) x² + 9 = 4x f) 25x² = 20x – 4 g) 4x² - x + 1 = x + 3x² h) 3x² + 5x = -x – 9 + 2x² i) 4 + x ( x - 4) = x j) x ( x + 3) – 40 = 0
Soluções para a tarefa
Resposta:
a) 2x² - 7x = 15 ...a=2,b=-7 e c=-15
2x²-7x-15=0
x'=[7+√(49+120)]/4=(7+13)/4=5
x''=[7-√(49+120)]/4=(7-13)/4=-6/4
b) 4x² + 9 = 12x ...a=4 ..b=-12 e c=9
4x²-12x+9=0
x'=x''=[12+√(144-144)]/8=12/8=3/4
c) x² = x + 12 ...a=1, b=-1 e c=-12
x²-x-12=0
x'=[1+√(1+48)]/2=(1+7)/2=4
x''=[1-√(1+48)]/2=(1-7)/2=-3
d) 2x² = -12x - 18 ...a=2 , b=12 e c=18
2x²+12x+18=0
x'=x''=[-12+√(144-144)]/4=-12/4=-3
e) x² + 9 = 4x ...a=1 , b=-4 e c=9
x²-4x+9=0
Δ=16-36 < 0 ...ñ tem raízes
f) 25x² = 20x – 4 ...a=25 , b =-20 e c=4
25x²-20x+4=0
x'=x''=[20+√(400-400)]/50=20/50=2/5
g) 4x² - x + 1 = x + 3x² ==>a=1 , b=-2 e c=1
x²-2x+1=0
x'=x''=[2+√(4-4)]/2=2/2=1
h) 3x² + 5x = -x – 9 + 2x² a=1 ,b =6 e c=9
x²+6x +9=0
x'=x''=[-6+√(36-36)]/2=-6/2=-3
i) 4 + x ( x - 4) = x ==>4+x²-4x=x ==>a=1 , b=-5x e c=4
x²-5x+4=0
x'=[5+√(25-16)]/2=(5+3)/2=4
x''=[5-√(25-16)]/2=(5-3)/2=1
j) x ( x + 3) – 40 = 0 ==>x²+3x-40=0 ==>a=1 , b=3 e c=-40
x'=[-3+√(9+160)]/2=(-3+13)/2=5
x''=[-3-√(9+160)]/2=(-3-13)/2=-8