Resolva as seguintes equações:
Anexos:
![](https://pt-static.z-dn.net/files/d4c/09b4af03053e0c61953fad1fc902b30b.jpg)
Soluções para a tarefa
Respondido por
1
a) (n+2)!=6n!
(n+2)(n+1)n! = 6n!
(n+2)(n+1)=6
n^2+3n+2-6=0
n^2+3n-4=0 (resolvendo a equação por Bháskara):
n = 1
b)
n! = 120
n! = 5!
n = 5
c)
![\frac{n!}{(n-2)!}=42 \\
\\
\frac{n.(n-1)(n-2)!}{(n-2)!}=42 \\
\\
n(n-1)=42 \\
\\
n^2-n-42=0 \\
\\
n=7 \frac{n!}{(n-2)!}=42 \\
\\
\frac{n.(n-1)(n-2)!}{(n-2)!}=42 \\
\\
n(n-1)=42 \\
\\
n^2-n-42=0 \\
\\
n=7](https://tex.z-dn.net/?f=%5Cfrac%7Bn%21%7D%7B%28n-2%29%21%7D%3D42++%5C%5C%0A%5C%5C%0A%5Cfrac%7Bn.%28n-1%29%28n-2%29%21%7D%7B%28n-2%29%21%7D%3D42++%5C%5C%0A%5C%5C%0An%28n-1%29%3D42++%5C%5C%0A%5C%5C%0An%5E2-n-42%3D0++%5C%5C%0A%5C%5C%0An%3D7)
d)
![\frac{(n+2)!-(n+1)!}{n(n-1)!}=25 \\
\\
\frac{(n+2)(n+1)n(n-1)!-(n+1)n(n-1)!}{n(n-1)!}=25 \\
\\
\frac{n(n-1)![(n+2)(n+1)-(n+1)]}{n(n-1)!}=25 \\
\\
(n+2)(n+1)-(n+1)=25 \\
\\
n^2+2 n+1=25 \\
\\
n^2+2 n-24=0 \frac{(n+2)!-(n+1)!}{n(n-1)!}=25 \\
\\
\frac{(n+2)(n+1)n(n-1)!-(n+1)n(n-1)!}{n(n-1)!}=25 \\
\\
\frac{n(n-1)![(n+2)(n+1)-(n+1)]}{n(n-1)!}=25 \\
\\
(n+2)(n+1)-(n+1)=25 \\
\\
n^2+2 n+1=25 \\
\\
n^2+2 n-24=0](https://tex.z-dn.net/?f=%5Cfrac%7B%28n%2B2%29%21-%28n%2B1%29%21%7D%7Bn%28n-1%29%21%7D%3D25++%5C%5C%0A%5C%5C%0A%5Cfrac%7B%28n%2B2%29%28n%2B1%29n%28n-1%29%21-%28n%2B1%29n%28n-1%29%21%7D%7Bn%28n-1%29%21%7D%3D25++%5C%5C%0A%5C%5C%0A%5Cfrac%7Bn%28n-1%29%21%5B%28n%2B2%29%28n%2B1%29-%28n%2B1%29%5D%7D%7Bn%28n-1%29%21%7D%3D25++%5C%5C%0A%5C%5C%0A%28n%2B2%29%28n%2B1%29-%28n%2B1%29%3D25++%5C%5C%0A%5C%5C%0An%5E2%2B2+n%2B1%3D25++%5C%5C%0A%5C%5C%0An%5E2%2B2+n-24%3D0)
Continua com a resolução da equação de segundo grau
(n+2)(n+1)n! = 6n!
(n+2)(n+1)=6
n^2+3n+2-6=0
n^2+3n-4=0 (resolvendo a equação por Bháskara):
n = 1
b)
n! = 120
n! = 5!
n = 5
c)
d)
Continua com a resolução da equação de segundo grau
Perguntas interessantes