Matemática, perguntado por humanaaleatoria, 11 meses atrás

Resolva as raízes irracionais : U = R ​

Anexos:

Soluções para a tarefa

Respondido por marcelo7197
1
Ola!!

Dada as equações irracionais:

{\color{blue}{x-3=2\sqrt{x}}}

2\sqrt{x}=x-3

\sqrt{x}=\frac{x-3}{2}

{\color{blue}{x=(\frac{x-3}{2})^2}}

x=\frac{(x-3)^2}{2^2}

x=\frac{x^2-2*x*3+3^2}{4}

{\color{blue}{x=\frac{x^2-6x+9}{4}}}

x*4=x^2-6x+9

{\color{blue}{4x=x^2-6x+9}}

x^2-6x-4x+9=0

{\color{blue}{x^2-10x+9=0}}

Coeficientes:\left\{\begin{array}{cc}a=1\\b=-10\\c=9\\\end{array}\right

Lembrando que:

\large\boxed{\boxed{{x_{1,2}=\frac{-b\pm\sqrt{b^2-4*a*c}}{2*a}}}}}}

x_{1,2}=\frac{10\pm\sqrt{(-10)^2-4*1*9}}{2*1}

x_{1,2}=\frac{10\pm\sqrt{100-36}}{2}=\frac{10\pm\sqrt{64}}{2}

{\color{blue}{x_{1}=\frac{10+8}{2}=\frac{18}{2}=9}}

{\color{blue}{x_{2}=\frac{10-8}{2}=\frac{2}{2}=1}}

{\color{blue}{Sol:\{\:1;\:9}}}

B)

{\color{blue}{→2x=\sqrt{9x-2}}}

9x-2=(2x)^2

9x-2=4x^2

{\color{blue}{-4x^2+9x-2=0}}

Coeficientes:\left\{\begin{array}{cc}a=-4\\b=9\\c=-2\\\end{array}\right

Achando primeiro seu Discriminante pela expressão:

\Delta=b^2-4*a*c

\Delta=9^2-4*(-4)*(-2)

\Delta=81-32

{\color{blue}{\Delta=49}}

Achando as raízes pelo Bhaskara:

\large\boxed{\boxed{{x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2*a}}}}}}

x_{1}=\frac{-9+\sqrt{49}}{2*(-4)}=\frac{-9+7}{-8}

{\color{blue}{x_{1}=\frac{-2}{-8}=\frac{1}{4}}}

x_{2}=\frac{-9-7}{2*(-4)}=\frac{-16}{-8}

{\color{blue}{x_{2}=2}}

Sol:\{\:\frac{1}{4};2\:\}

Espero ter ajudado bastante;)
Perguntas interessantes