Matemática, perguntado por mykaelle1109, 10 meses atrás

resolva as potências ​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

a)

\sf 5^3=5\cdot5\cdot5

\sf 5^3=\red{125}

b)

\sf (-5)^3=(-5)\cdot(-5)\cdot(-5)

\sf (-5)^3=\red{-125}

c)

\sf 5^{-3}=\dfrac{1}{5^3}

\sf 5^{-3}=\red{\dfrac{1}{125}}

d)

\sf \left(-\dfrac{2}{3}\right)^3=\left(-\dfrac{2}{3}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot\left(-\dfrac{2}{3}\right)

\sf \left(-\dfrac{2}{3}\right)^3=\red{\dfrac{-8}{27}}

e)

\sf \left(\dfrac{1}{50}\right)^{-2}=50^2

\sf \left(\dfrac{1}{50}\right)^{-2}=50\cdot50

\sf \left(\dfrac{1}{50}\right)^{-2}=\red{2500}

f)

\sf \left(-\dfrac{11}{7}\right)^0=\red{1}

g)

\sf \left(\dfrac{3}{2}\right)^1=\red{\dfrac{3}{2}}

h)

\sf -(-2)^5=-(-2)\cdot(-2)\cdot(-2)\cdot(-2)\cdot(-2)

\sf -(-2)^5=-(-32)

\sf -(-2)^5=\red{32}

i)

\sf -10^2=-10\cdot10

\sf -10^2=\red{-100}

j)

\sf 10^{-3}=\dfrac{1}{10^3}

\sf 10^{-3}=\red{\dfrac{1}{1000}}

k)

\sf -\left(-\dfrac{1}{2}\right)^{-2}=-(-2)^{2}

\sf -\left(-\dfrac{1}{2}\right)^{-2}=-(-2)\cdot(-2)

\sf -\left(-\dfrac{1}{2}\right)^{-2}=\red{-4}

Perguntas interessantes