Matemática, perguntado por vinivinisantos11, 1 ano atrás

Resolva as operações abaixo, utilizando as matrizes abaixo:


Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

A=(a_{ij}) _{3.3}  →  matriz de ordem 3

                                             A=\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21} &a_{22} &a_{23} \\a_{31} &a_{32} &a_{33}\end{array}\right]

    a_{11}1=1a_{11}=10

    a_{12}1\neq2a_{12}=0

    a_{13}1\neq3a_{13}=0

    a_{21}2\neq1a_{21}=0

    a_{22}2=2a_{22}=10

    a_{23}2\neq3a_{23}=0

    a_{31}3\neq1a_{31}=0

    a_{32}3\neq2a_{32}=0

    a_{33}3=3a_{33}=10

Daí:

                                             A=\left[\begin{array}{ccc}10&0&0\\0&10&0\\0&0&10\end{array}\right]

temos uma matriz diagonal

-------------------------------------------------------------------------------------

B=(b_{ij}) _{3.3}  →  matriz de ordem 3

                                             B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31} &b_{32}&b_{33}\end{array}\right]

    b_{11}1=1b_{11}=3

    b_{12}1\neq2b_{12}=0

    b_{13}1\neq3b_{13}=0

    b_{21}2\neq1b_{21}=0

    b_{22}2=2b_{22}=3

    b_{23}2\neq3b_{23}=0

    b_{31}3\neq1b_{31}=0

    b_{32}3\neq2b_{32}=0

    b_{33}3=3b_{33}=3

Daí:

                                             B=\left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right]

temos uma matriz diagonal

---------------------------------------------------------------------------------------

Cálculo de A . B

    A.B=\left[\begin{array}{ccc}10&0&0\\0&10&0\\0&0&10\end{array}\right].\left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right]

    A.B=\left[\begin{array}{ccc}10.3+0.0+0.0&10.0+0.3+0.0&10.0+0.0+0.3\\0.3+10.0+0.0&0.0+10.3+0.0&0.0+10.0+0.3\\0.3+0.0+10.0&0.0+0.3+10.0&0.0+0.1+10.3\end{array}\right]

    A.B=\left[\begin{array}{ccc}30+0+0&0+0+0&0+0+0\\0+0+0&0+30+0&0+0+0\\0+0+0&0+0+0&0+0+30\end{array}\right]

    A.B=\left[\begin{array}{ccc}30&0&0\\0&30&0\\0&0&30\end{array}\right]

-------------------------------------------------------------------------------------------

Cálculo de  det (A.B)

    det(A.B)=\left[\begin{array}{ccc}30&0&0\\0&30&0\\0&0&30\end{array}\right]\left[\begin{array}{ccc}30&0\\0&30\\0&0\end{array}\right]

    det(A.B) = 30×30×30+0×0×0+0×0×0-0×30×0-30×0×0-0×0×30

    det(A.B) = 27000+0+0-0-0-0

    det(A.B) = 27000

Perguntas interessantes