Resolva as integrais a seguir usando o método de integração por partes.
Soluções para a tarefa
1)
a)
∫ x * e^(x) dx
u=x ==> du =dx
dv=e^(x) dx ==> ∫dv=∫e^(x) dx ==>v=e^(x)
∫ x * e^(x) dx =x* e^(x)- ∫e^(x) dx
∫ x * e^(x) dx =x* e^(x)- e^(x) + c
b)
∫ x * ln(x) dx
u= ln(x) ==>du= dx/x
dv =x dx ==>∫ dv = ∫ x dv ==> v= x²/2
∫ x * ln(x) dx= (x²/2) * ln(x)- ∫ x²/2 dx/x
∫ x * ln(x) dx= (x²/2) * ln(x)- (1/2)*∫ x dx
∫ x * ln(x) dx= (x²/2) * ln(x)- (1/2)*x²/2 + c
∫ x * ln(x) dx= (x²/2) * ln(x)- (1/4)*x²+ c
c)
∫ x² * ln(x) dx
u=ln(x) ==> du=dx/x
dv=x² dx ==>∫ dv=∫x² dx ==>v= x³/3
∫ x² * ln(x) dx = ln(x) * x³/3 - ∫ x³/3 * dx/x
∫ x² * ln(x) dx = ln(x) * x³/3 -(1/3)* ∫ x² * dx
∫ x² * ln(x) dx = ln(x) * x³/3 -(1/3)* x³/3 + c
∫ x² * ln(x) dx = ln(x) * x³/3 -(1/9)* x³ + c
d)
∫ x * sec²(x) dx
u=x ==> du=dx
du = sec²(x) dx ==>∫ du = ∫ sec²(x) dx ==>u =tan(x)
∫ x * sec²(x) dx = x * tan(x) - ∫ tan(x) dx
∫ x * sec²(x) dx = x * tan(x) - (-ln(cos(x))) +c
∫ x * sec²(x) dx = x * tan(x) +ln(cos(x)) +c
e)
∫ √x * ln (x) dx
u=ln (x) ==> du=dx/x
dv = √x dx ==>∫ dv = ∫ √x dx ==> v= (2/3) * x^(3/2)
∫ √x * ln (x) dx = (2/3) * x^(3/2) * ln(x) - ∫(2/3) * x^(3/2) dx/x
∫ √x * ln (x) dx = (2/3) * x^(3/2) * ln(x) -(2/3)* ∫√x dx
∫ √x * ln (x) dx = (2/3) * x^(3/2) * ln(x) -(2/3)* x^(1/2+1)/(1/2+1) +c
∫ √x * ln (x) dx = (2/3) * x^(3/2) * ln(x) -(2/3)* √x³/(3/2) +c
∫ √x * ln (x) dx = (2/3) * x^(3/2) * ln(x) - (4/9)* √x³+c
f)
∫(x+1)* cos(2x) dx
=∫x* cos(2x) dx + ∫ cos(2x) dx
______________________________________________
∫x* cos(2x) dx
u =x ==> du = dx
dv = cos(2x) dx ==> ∫ dv=∫cos(2x) dx ==> v= (1/2) * sen(2x)
∫x* cos(2x) dx= (x/2) * sen(2x) - ∫ (1/2) * sen(2x) dx
∫x* cos(2x) dx= (x/2) * sen(2x) - (1/2)*(-1/2) * cos(2x)) + c
∫x* cos(2x) dx= (x/2) * sen(2x) +(1/4) * cos(2x)) + c
______________________________________________
∫ cos(2x) dx = (1/2) * sen(2x) + c
______________________________________________
∫(x+1)* cos(2x) dx = (x/2) * sen(2x) +(1/4) * cos(2x)) + (1/2) * sen(2x) + c