Matemática, perguntado por dudabolaxa, 10 meses atrás

Resolva as expressões abaixo:
a)n!÷(n-2)!
b)n!÷(n+2)!
c)(n-1)!÷(n+1)!
d)(n+2)÷(n-1)!​​

Soluções para a tarefa

Respondido por GeBEfte
1

Vamos utilizar a definição de fatorial para simplificar as expressões dadas.

n!~=~n\cdot(n-1)\cdot(n-2)\cdot~...~\cdot(n-k)!\\\\ou\\\\n!~=~n\cdot(n-1)\cdot(n-2)\cdot~...~\cdot1

a)

\dfrac{n!}{(n-2)!}~=\\\\\\=~\dfrac{n\cdot(n-1)\cdot(n-2)!}{(n-2)!}\\\\\\=~\dfrac{n\cdot(n-1)\cdot1}{1}\\\\\\=~\boxed{n\cdot(n-1)}~~ou~~ \boxed{n^2-n}

b)

\dfrac{n!}{(n+2)!}~=\\\\\\=~\dfrac{n!}{(n+2-1)\cdot(n+2-1-1)!}\\\\\\=~\dfrac{n!}{(n+1)\cdot n!}\\\\\\=~\dfrac{1}{(n+1)\cdot1}\\\\\\=~\boxed{\dfrac{1}{n+1}}

c)

\dfrac{(n-1)!}{(n+1)!}~=\\\\\\=~\dfrac{(n-1)!}{(n+1)\cdot(n+1-1)\cdot(n+1-1-1)!}\\\\\\=~\dfrac{(n-1)!}{(n+1)\cdot(n)\cdot(n-1)!}\\\\\\=~\dfrac{1}{(n+1)\cdot n\cdot1}\\\\\\=~\boxed{\dfrac{1}{(n+1)\cdot n}}~~ou~~ \boxed{\dfrac{1}{n^2+n}}

d)

\dfrac{(n+2)!}{(n-1)!}~=\\\\\\=~\dfrac{(n+2)\cdot(n+2-1)\cdot(n+2-1-1)\cdot(n+2-1-1-1)!}{(n-1)!}\\\\\\=~\dfrac{(n+2)\cdot(n+1)\cdot(n)\cdot(n-1)!}{(n-1)!}\\\\\\=~\dfrac{(n+2)\cdot(n+1)\cdot n\cdot1}{1}\\\\\\=~\boxed{(n+2)\cdot(n+1)\cdot n}~~ou~~\boxed{n^3+3n^2+2n}


dudabolaxa: Muito obrigada!
GeBEfte: Tranquilo :)
Perguntas interessantes