Resolva as equações:
-x²-x+6=0
x²-2x-3=0
Soluções para a tarefa
Respondido por
1
Olá.
Vamos fazer uma equação de cada vez.
![\mathsf{-x^2-x+6=0} \mathsf{-x^2-x+6=0}](https://tex.z-dn.net/?f=%5Cmathsf%7B-x%5E2-x%2B6%3D0%7D)
Primeiro temos de descobrir o Delta Δ.
![\boxed{\mathsf{\Delta=b^2-4\cdot a\cdot c}}\\\\
\mathsf{\Delta=(-1)^2-4\cdot(-1)\cdot6}\\
\mathsf{\Delta=1-4\cdot(-6)}\\
\mathsf{\Delta=1-(-24)}\\
\mathsf{\Delta=1+24}\\
\boxed{\mathsf{\Delta=25}} \boxed{\mathsf{\Delta=b^2-4\cdot a\cdot c}}\\\\
\mathsf{\Delta=(-1)^2-4\cdot(-1)\cdot6}\\
\mathsf{\Delta=1-4\cdot(-6)}\\
\mathsf{\Delta=1-(-24)}\\
\mathsf{\Delta=1+24}\\
\boxed{\mathsf{\Delta=25}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathsf%7B%5CDelta%3Db%5E2-4%5Ccdot+a%5Ccdot+c%7D%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%5CDelta%3D%28-1%29%5E2-4%5Ccdot%28-1%29%5Ccdot6%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D1-4%5Ccdot%28-6%29%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D1-%28-24%29%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D1%2B24%7D%5C%5C%0A%5Cboxed%7B%5Cmathsf%7B%5CDelta%3D25%7D%7D)
Tendo Δ positivo, podemos agora descobrir os 2 possíveis valores de x através da fórmula:
![\mathsf{x=\dfrac{-b\pm\sqrt\Delta}{2\cdot a}}\\\\
\mathsf{x=\dfrac{-(-1)\pm\sqrt{25}}{2\cdot (-1)}}\\\\
\mathsf{x=\dfrac{1\pm5}{-2}}\\\\\\\\
\begin{array}{ccc}\mathsf{x'=\dfrac{1+5}{-2}}&\left|\right&\mathsf{x'=\dfrac{1-5}{-2}}\\\\\mathsf{x'=\dfrac{6}{-2}}&\left|\right&\mathsf{x'=\dfrac{-4}{-2}}\\\\\mathsf{x'=-3}&\left|\right&\mathsf{x'=2}\\\end{array}\\\\\\\boxed{\mathsf{S=\{-3,~2\}}} \mathsf{x=\dfrac{-b\pm\sqrt\Delta}{2\cdot a}}\\\\
\mathsf{x=\dfrac{-(-1)\pm\sqrt{25}}{2\cdot (-1)}}\\\\
\mathsf{x=\dfrac{1\pm5}{-2}}\\\\\\\\
\begin{array}{ccc}\mathsf{x'=\dfrac{1+5}{-2}}&\left|\right&\mathsf{x'=\dfrac{1-5}{-2}}\\\\\mathsf{x'=\dfrac{6}{-2}}&\left|\right&\mathsf{x'=\dfrac{-4}{-2}}\\\\\mathsf{x'=-3}&\left|\right&\mathsf{x'=2}\\\end{array}\\\\\\\boxed{\mathsf{S=\{-3,~2\}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%5CDelta%7D%7B2%5Ccdot+a%7D%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B-%28-1%29%5Cpm%5Csqrt%7B25%7D%7D%7B2%5Ccdot+%28-1%29%7D%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B1%5Cpm5%7D%7B-2%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Barray%7D%7Bccc%7D%5Cmathsf%7Bx%27%3D%5Cdfrac%7B1%2B5%7D%7B-2%7D%7D%26amp%3B%5Cleft%7C%5Cright%26amp%3B%5Cmathsf%7Bx%27%3D%5Cdfrac%7B1-5%7D%7B-2%7D%7D%5C%5C%5C%5C%5Cmathsf%7Bx%27%3D%5Cdfrac%7B6%7D%7B-2%7D%7D%26amp%3B%5Cleft%7C%5Cright%26amp%3B%5Cmathsf%7Bx%27%3D%5Cdfrac%7B-4%7D%7B-2%7D%7D%5C%5C%5C%5C%5Cmathsf%7Bx%27%3D-3%7D%26amp%3B%5Cleft%7C%5Cright%26amp%3B%5Cmathsf%7Bx%27%3D2%7D%5C%5C%5Cend%7Barray%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7BS%3D%5C%7B-3%2C%7E2%5C%7D%7D%7D)
Agora vamos a segunda equação.
Primeiro o delta e logo após descobrir o valor de X.
![\mathsf{x^2-2x-3=0} \mathsf{x^2-2x-3=0}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2-2x-3%3D0%7D)
![\mathsf{\Delta=(-2)^2-4\cdot1\cdot(-3)}\\
\mathsf{\Delta=4-4\cdot(-3)}\\
\mathsf{\Delta=4-(-12)}\\
\mathsf{\Delta=4+12}\\
\mathsf{\Delta=16} \mathsf{\Delta=(-2)^2-4\cdot1\cdot(-3)}\\
\mathsf{\Delta=4-4\cdot(-3)}\\
\mathsf{\Delta=4-(-12)}\\
\mathsf{\Delta=4+12}\\
\mathsf{\Delta=16}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5CDelta%3D%28-2%29%5E2-4%5Ccdot1%5Ccdot%28-3%29%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D4-4%5Ccdot%28-3%29%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D4-%28-12%29%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D4%2B12%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D16%7D)
![\mathsf{x=\dfrac{-(-2)\pm\sqrt{16}}{2\cdot1}}\\\\
\mathsf{x=\dfrac{2\pm4}{2}}\\\\\\\begin{array}{ccc}\mathsf{x=\dfrac{2+4}{2}}&\left|\right&\mathsf{x=\dfrac{2-4}{2}}\\\\\mathsf{x=\dfrac{6}{2}}&\left|\right&\mathsf{x=\dfrac{-2}{2}}\\\\\mathsf{x=3}&|&\mathsf{x=-1}\end{array}\\\\\\\mathsf{S=\{-1,~3\}} \mathsf{x=\dfrac{-(-2)\pm\sqrt{16}}{2\cdot1}}\\\\
\mathsf{x=\dfrac{2\pm4}{2}}\\\\\\\begin{array}{ccc}\mathsf{x=\dfrac{2+4}{2}}&\left|\right&\mathsf{x=\dfrac{2-4}{2}}\\\\\mathsf{x=\dfrac{6}{2}}&\left|\right&\mathsf{x=\dfrac{-2}{2}}\\\\\mathsf{x=3}&|&\mathsf{x=-1}\end{array}\\\\\\\mathsf{S=\{-1,~3\}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B-%28-2%29%5Cpm%5Csqrt%7B16%7D%7D%7B2%5Ccdot1%7D%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B2%5Cpm4%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Bccc%7D%5Cmathsf%7Bx%3D%5Cdfrac%7B2%2B4%7D%7B2%7D%7D%26amp%3B%5Cleft%7C%5Cright%26amp%3B%5Cmathsf%7Bx%3D%5Cdfrac%7B2-4%7D%7B2%7D%7D%5C%5C%5C%5C%5Cmathsf%7Bx%3D%5Cdfrac%7B6%7D%7B2%7D%7D%26amp%3B%5Cleft%7C%5Cright%26amp%3B%5Cmathsf%7Bx%3D%5Cdfrac%7B-2%7D%7B2%7D%7D%5C%5C%5C%5C%5Cmathsf%7Bx%3D3%7D%26amp%3B%7C%26amp%3B%5Cmathsf%7Bx%3D-1%7D%5Cend%7Barray%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BS%3D%5C%7B-1%2C%7E3%5C%7D%7D)
Qualquer dúvida, deixe nos comentários.
Bons estudos.
Vamos fazer uma equação de cada vez.
Primeiro temos de descobrir o Delta Δ.
Tendo Δ positivo, podemos agora descobrir os 2 possíveis valores de x através da fórmula:
Agora vamos a segunda equação.
Primeiro o delta e logo após descobrir o valor de X.
Qualquer dúvida, deixe nos comentários.
Bons estudos.
Perguntas interessantes
Português,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Biologia,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás