Resolva as equações do 2º grau completas utilizando a fórmula geral. a) x² - 5x + 6 = 0 b) x² - 8x + 12 = 0 c) x² + 2x - 8 = 0 d) x² - 5x + 8 = 0 e) 2x² - 8x + 8 = 0 f) x² - 4x - 5 = 0 g) -x² + x + 12 = 0
Soluções para a tarefa
Resposta:
a) x' = 3; x'' = 2
b) x' = 6; x'' = 2
c) x' = 2; x'' = -4
d) x' = 5 + √-7 / 2, x'' = 5 - √-7 / 2
e) x = 2
f) x' = 5, x'' = -1
g) x' = 4; x'' = -3
Explicação passo-a-passo:
a) x² - 5x + 6 = 0
a = 1; b = -5; c = 6
Δ = b² - 4ac
Δ = (-5)² - 4 * 1 * 6
Δ = 25 - 24
Δ = 1
x = -b ± √Δ / 2a
x = -(-5) ± √1 / 2 * 1
x = 5 ± 1 / 2
x' = 5 + 1 / 2
x' = 6 / 2
x' = 3
x'' = 5 - 1 / 2
x'' = 4 / 2
x'' = 2
S = {x' = 3, x'' = 2}
b) x² - 8x + 12 = 0
a = 1; b = -8; c = 12
Δ = b² - 4ac
Δ = (-8)² - 4 * 1 * 12
Δ = 64 - 48
Δ = 16
x = -b ± √Δ / 2a
x = -(-8) ± √16 / 2 * 1
x = 8 ± 4 / 2
x' = 8 + 4 / 2
x' = 12 / 2
x' = 6
x'' = 8 - 4 / 2
x'' = 4 / 2
x'' = 2
S = {x' = 6, x'' = 2}
c) x² + 2x - 8 = 0
a = 1; b = 2; c = -8
Δ = b² - 4ac
Δ = 2² - 4 * 1 * (-8)
Δ = 4 - (-32)
Δ = 4 + 32
Δ = 36
x = -b ± √Δ / 2a
x = -2 ± √36 / 2 * 1
x = -2 ± 6 / 2
x' = -2 + 6 / 2
x' = 4 / 2
x' = 2
x'' = -2 - 6 / 2
x'' = -8 / 2
x'' = -4
S = {x' = 2, x'' = -4}
d) x² - 5x + 8 = 0
a = 1; b = -5; c = 8
x = -b ± √b² - 4ac / 2a
x = -(-5) ± √(-5)² - 4 * 1 * 8 / 2 * 1
x = 5 ± √25 - 32 / 2
x = 5 ± √-7 / 2
x' = 5 + √-7 / 2
x'' = 5 - √-7 / 2
S = {x' = 5 + √-7 / 2; x'' = 5 - √-7 / 2}
e) 2x² - 8x + 8 = 0
x² - 4x + 4 = 0
a = 1; b = -4; c = 4
Δ = b² - 4ac
Δ = (-4)² - 4 * 1 * 4
Δ = 16 - 16
Δ = 0
Apenas uma solução.
x = -b ± √Δ / 2a
x = -(-4) ± √0 / 2 * 1
x = 4 ± 0 / 2
x = 4 / 2
x = 2
S = {x = 2}
f) x² - 4x - 5 = 0
a = 1; b = -4; c = -5
Δ = b² - 4ac
Δ = (-4)² - 4 * 1 * (-5)
Δ = 16 - (-20)
Δ = 16 + 20
Δ = 36
x = -b ± √Δ / 2a
x = -(-4) ± √36 / 2 * 1
x = 4 ± 6 / 2
x' = 4 + 6 / 2
x' = 10 / 2
x' = 5
x'' = 4 - 6 / 2
x'' = -2 / 2
x'' = -1
S = {x' = 5; x'' = -1}
g) -x² + x + 12 = 0
x² - x - 12 = 0
a = 1; b = -1; c = -12
Δ = b² - 4ac
Δ = (-1)² - 4 * 1 * (-12)
Δ = 1 - (-48)
Δ = 1 + 48
Δ = 49
x = -b ± √Δ / 2a
x = -(-1) ± √49 / 2 * 1
x = 1 ± 7 / 2
x' = 1 + 7 / 2
x' = 8 / 2
x' = 4
x'' = 1 - 7 / 2
x'' = -6 / 2
x'' = -3
S = {x' = 4; x'' = -3}