Resolva as equações: 1) x² - 5x + 6 = 0 (R: 2, 3) 2) x² - 8x + 12 = 0 (R: 2, 6)
3) x² + 2x - 8 = 0 (R: 2, -4)
4) x² - 5x + 8 = 0 (R: vazio)
5) 2x² - 8x + 8 = 0 (R: 2,)
6) x² - 4x - 5 = 0 (R: -1, 5)
7) -x² + x + 12 = 0 (R: -3, 4)
8) -x² + 6x - 5 = 0 (R: 1, 5)
9) 6x² + x - 1 = 0 (R: 1/3 , -1/2)
10) 3x² - 7x + 2 = 0 (R: 2, 1/3)
11) 2x² - 7x = 15 (R: 5, -3/2)
12) 4x² + 9 = 12x (R: 3/2)
13) 4x² - x + 1 = x + 3x² (R: 1)
14) 3x² + 5x = -x – 9 + 2x² (R: -3)
15) 4 + x ( x - 4) = x (R: 1,4)
16) x ( x + 3) – 40 = 0 (R: 5, -8)
17) (x + 3)² = 1 (R:-2,-4)
18) (x - 5)² = 1 (R:3,7)
19) (2x - 4)² = 0 (R:2)
20) (x - 3)² = -2x² (R:vazio)
Soluções para a tarefa
1) x² - 5x + 6 = 0
∆= b²-4ac
∆= 25 -4.1.6
∆= 25-24
∆= 1
x'= -b+√∆/2.a
x'= 5+1/2.1
x'= 6/2
x'= 3
x"= -b-√∆/2a
x"= 5-1/2
x"= 2
2) x² - 8x + 12 = 0
∆= b²-4ac
∆= 64-4.1.12
∆= 64-48
∆= 16
x'= -b+√∆/2a
x'= 8+4/2
x'= 6
x"= -b-√∆/2a
x"= 8-4/2
x"= 2
3) x² + 2x - 8 = 0
∆= b²-4ac
∆= 4-4.1.-8
∆= 36
x'= -b+√∆/2a
x'= 2+6/2
x'= 4
x"= -b-√∆/2a
x"= 2-6/2
x"= -2
4) x² - 5x + 8 = 0 (R: vazio)
∆= b²-4ac
∆= 25-4.1.8
∆= 25-32
∆>0 Não pertence aos reais.
5) 2x² - 8x + 8 = 0 (÷2)
x²-4x-4=0
∆= b²-4ac
∆= 4 - 4.1.-4
∆= 4+16
∆= 20
x'= -b+√∆/2a
x'= 4 +2√5/2
x'= 2+1√5
x"= -b-√∆/2a
x"= 4 -2√5/2
x"= 2-1√5
6) x² - 4x - 5 = 0
∆= b²-4ac
∆= 16 -4.1.-5
∆= 36
x'= -b+√∆/2a
x'= 4 + 6/2
x'= 5
x"= -b-√∆/2a
x"= 4-6/2
x"= -2/2 = -1
7) -x² + x + 12 = 0 (R: -3, 4)
∆= b²-4ac
∆= 1 -4.(-1).12
∆= 48 +1
∆= 49
x'= -b+√∆/2a
x'= -1+7/-2
x'= -3
x"= -b-√∆/2a
x"= -1-7/-2
x"= +4
8) -x² + 6x - 5 = 0
∆= b²-4ac
∆= 36 -4.(-1).-5
∆= 36 -20
∆= 16
x'= -b+√∆/2a
x'= -6 + 4 / -2
x'= 1
x"= -b-√∆/2a
x"= -6-4/-2
x"= 5
9) 6x² + x - 1 = 0
∆= b²-4ac
∆= 1 - 24.(-1)
∆= 25
x'= -b+√∆/2a
x'= -1 +5/12 = 4/12 = 2/6 = 1/3
x"= -b-√∆/2a
x"= -1-5/12 = -1/2
10) 3x² - 7x + 2 = 0
∆= b²-4ac
∆= 49 -4.3.2
∆= 49-24 = 25
x'= -b+√∆/2a
x'= 7+5/6
x'= 12/6= 2
x"= -b-√∆/2a
x"= 7-5/6
x"= 2/6 = 1/3
11) 2x² - 7x = 15
2x²-7x-15=0
∆= b²-4ac
∆= 49-4.2.-15
∆= 49+120
∆ = 169
x'= -b+√∆/2a
x'= 7+13/2.2
x'= 20/4
x'= 5
x"= -b-√∆/2a
x"= 7 -13 / 4
x"= -6/4
x"= -3/2
12) 4x² + 9 = 12x
4x²-12x-9= 0
∆= b²-4ac
∆= 144-4.4.-9
∆= 144-144
x'= -b+√∆/2a
x'= 12 + 0/8
x'= 6/4 = 3/2
x"= -b-√∆/2a
x"= 12+0/8= 3/2
13) 4x² - x + 1 = x + 3x²
4x²-3x²-x-x+1= 0
x²-2x+1=0
∆= b²-4ac
∆= 4-4.1.1
∆= 0
x'= -b+√∆/2a
x'= 2+0/2
x'= 1
x"= -b-√∆/2a
x"= 2-0/2
x"= 1
14) 3x² + 5x = -x – 9 + 2x²
3x²5x+x+9-2x²= 0
x²+6x+9= 0
∆= b²-4ac
∆= 36 - 36
∆= 0
x'= -b+√∆/2a
x'= -6+0/2
x'= -3
x"= -b-√∆/2a
x"= -6-0/2
x"= -3
15) 4 + x ( x - 4) = x
4+x²-4x-x= 0
x²-5x+4= 0
∆= b²-4ac
∆= 25 -4.1.4
∆= 9
x'= -b+√∆/2a
x'= 5 +3/2
x'= 8/2
x'= 4
x"= -b-√∆/2a
x"= 5-3/2
x"= 1
16) x ( x + 3) – 40 = 0
x²+3x-40=0
∆= b²-4ac
∆= 9 - 4.1.(-40)
∆= 169
x'= -b+√∆/2a
x'= -3+13/2
x'= 10/2
x'= 5
x"= -b-√∆/2a
x"= -3-13/2
x"= -16/2 = -8
17) (x + 3)² = 1
x²+6x+9-1= 0
x²+6x-8= 0
∆= b²-4ac
∆= 36 - 32
∆= 4
x'= -b+√∆/2a
x'= -6+2/2
x'= -4/2 = -2
x"= -b-√∆/2a
x"= -6 -2/2
x"= -8/2 = -4
18) (x - 5)² = 1
(x-5).(x-5)-1= 0
x²-10x+24=0
∆= b²-4ac
∆= 100-4.1.24
∆= 100-96 = 4
x'= -b+√∆/2a
x'= 10+2/2
x'= 6
x"= -b-√∆/2a
x"= 10-2/2
x"= 4
19) (2x - 4)² = 0
(2x-4).(2x-4)=0 (÷2)
(x-2).(x-2)= 0
x²-4x+4= 0
∆= b²-4ac
∆= 16 -4.1.4
∆= 16- 16
∆= 0
x'= -b+√∆/2a
x'= -4+0/2
x'= -2
x"= -b-√∆/2a
x"= -4+0/2
x"= -2
20) (x - 3)² = -2x²
(x-3).(x-3) +2x²=0
x²-6x+9+2x²= 0
3x²-6x+9= 0 (÷3)
x²-2x+3= 0
∆= b²-4ac
∆= 4 -1.1.3
∆= 4-12
∆= -8
∆<0 não pertence aos reais. Resultado conjunto vazio