Matemática, perguntado por ilane, 1 ano atrás

resolva as equação exponenciais:

a) ( \frac{1}{3} ) ^{x+1} = \frac{ \sqrt{3} }{9}

b) \sqrt{ (\frac{1}{2})}^{3x-2} = (\frac{1}{2} ) ^{-4x} .2 ^{-x+4}


c)( \frac{1}{27}  )^{-x} .(3 ^{3x}) ^2= (\frac{1}{3} ) ^{x-1}

a numero b o 3x-2 esta dentro da raiz quadrada.


Soluções para a tarefa

Respondido por korvo
2
Olá Ilane,

use as propriedades da potenciação:

\left( \dfrac{1}{3}\right)^{x+1}= \dfrac{ \sqrt{3} }{9}\\\\
(3^{-1})^{x+1}=  \sqrt{3}*9^{-1}\\\\
3^{-x-1}=3^{ \tfrac{1}{2} }*(3^2)^{-1}\\
3^{-x-1}=3^{ \tfrac{1}{2} }*3^{-2}\\
3^{-x-1}=3^{ \tfrac{1}{2}-2 }\\
3^{-x-1}=3^{- \tfrac{3}{2} }\\
\not3^{-x-1}=\not3^{- \tfrac{3}{2} }\\\\
-x-1=- \dfrac{3}{2}\\\\
-x=- \dfrac{3}{2}+1\\\\
-x=- \dfrac{1}{2}~~*~~(-1)\\\\
x= \dfrac{1}{2}\\\\
S=\left\{ \dfrac{1}{2}\right\}

_________________________

 \sqrt{\left( \dfrac{1}{2}\right)^{3x-2}  }=\left( \dfrac{1}{2}\right)^{-4x}*2^{-x+4}\\\\
 \left( \dfrac{1}{2}\right)^{ \tfrac{3x-2}{2} }=(2^{-1})^{-4x}*2^{-x+4}\\\\
(2^{-1})^{ \tfrac{3x-2}{2} }=2^{4x}*2^{-x+4}\\\\
\not2^{- \tfrac{3x-2}{2} }=\not2^{3x+4}\\\\
 -\dfrac{3x-2}{2}=3x+4\\\\
-(3x-2)=2(3x+4)\\
-3x+2=6x+8\\
-3x-6x=8-2\\
-9x=6\\\\
x= \dfrac{~~6}{-9}\\\\
x=- \dfrac{2}{3}\\\\
S=\left\{- \dfrac{2}{3}\right\}

_________________________

\left( \dfrac{1}{27}\right)^{-x}*(3^{3x})^2=\left( \dfrac{1}{3}\right)^{x-1}\\\\
(3^{-3})^{-x}*3^{6x}=(3^{-1})^{x-1}\\\\
3^{3x}*3^{6x}=3^{-x+1}\\\\
\not3^{9x}=\not3^{-x+1}\\\\
9x=-x+1\\
9x+x=1\\
10x=1\\\\
x= \dfrac{1}{10}\\\\
S=\left\{ \dfrac{1}{10}\right\}

Espero ter ajudado e tenha ótimos estudos =))
Perguntas interessantes