Matemática, perguntado por VictoriaRuffo, 1 ano atrás

RESOLVA A SEGUINTE EQUAÇÃO DO 2° GRAU.
RESOLVENDO COM A FÓRMULA DE BHÁSKARA.

H) _1_ - _1_= _1_ com x ∈ IR, x  \neq 2 e x  \neq 3.
     x-3      2       x-2

Soluções para a tarefa

Respondido por eluciamonteiro
1
H)  1  -  1  =    1  
    x-3   2      x-2          mmc = 2.(x-2)(x-3)

2(x-2) - (x-2)(x-3)  = 2.(x-3)
          2.(x-2)(x-3)                     elimina denominador   2.(x-2)(x-3)  

 2(x-2) - (x-2)(x-3)  = 2.(x-3)  
2x - 4 - (x² - 3x - 2x + 6) = 2x - 6
2x - 4 - (x² - 5x + 6) = 2x - 6
2x² - 4 - x² + 5x - 6 = 2x - 6
2x² - x² + 5x - 2x- 4 - 6 + 6= 0
x² + 3x - 10 + 6 = 0
x² + 3x - 4 = 0

a = 1      b = +3      c = - 4
Δ = b² - 4.a.c
Δ = (+3)² - 4.(1).(-4)
Δ = 9 + 16
Δ = 25


x = - b ± √Δ
         2.a

x = - (+3) ± √25
            2.1

x = - 3  ± 
5
          2

x'= - 3+ 
5   =  + 2   =   1
          2            2      

x" = - 3 - 
5   =  - 8  =  - 4
            2            2 

S[(- 4
 , 1]
Perguntas interessantes