Matemática, perguntado por fernandes5gatin, 1 ano atrás

resolva a inequação(x² - 6x + 8) (-x² +4x - 3)/ 10 - 2x = 0

Soluções para a tarefa

Respondido por annaclaraamaral
10
Vamos lá. Pede-se para resolver a seguinte inequação: (x²-x-2)*(-x²-4x-3) > 0 Veja: temos aí em cima duas funções do 2º grau. Uma multiplica a outra e cujo resultado final tem que ser MAIOR do que zero. Temos f(x) = x²-x-2 e temos g(x) = -x²-4x-3. Para que possamos estudar a variação de sinais de cada uma delas, deveremos encontrar as raízes de cada uma das funções. Assim, temos: f(x) = x²-x-2 ---> raízes ---> x²-x-2 ---> x' = -1; x'' = 2 g(x) = -x²-4x-3 ---> raízes --->-x²-4x-3 = 0 ---> x' = - 3; x'' = - 1. Agora vamos estudar os sinais de cada uma das funções acima: a) f(x)=x²-x-2 ......+++++++++++(-1)- - - - - - - (2)+++++++++++++ b) g(x)=-x²-4x-3...- - - - (-3)++++(-1)- - - - - - - - - - - - - - - - - - - - c) a*b.................- - - - -(-3)++++(-1)+++++++(2)- - - - - - - - - - - Como queremos que o produto das duas funções seja MAIOR do que zero, então só nos vai interessar onde tiver sinal MAIS no item "c" acima, que nos fornece o resultado final do produto de f(x) por g(x). Assim, a resposta será: -3 < x < -1, ou -1 < x < 2 ----- Esta é a resposta. Se você quiser, também poderá apresentar o conjunto-solução assim: S = {x ∈ R | -3

fernandes5gatin: não pode seer -3 por que é maior ou igual a 0
Perguntas interessantes