Resolva a inequação modular:
| x² - 4 | > 3x
Soluções para a tarefa
Respondido por
5
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/1502016
_______________
Resolver a inequação modular:
![\mathsf{|x^2-4|>3x\qquad\quad(i)} \mathsf{|x^2-4|>3x\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%7Cx%5E2-4%7C%26gt%3B3x%5Cqquad%5Cquad%28i%29%7D)
• Vamos verificar quando a expressão do módulo muda de sentença, analisando o sinal da função que aparece no módulo:
![\mathsf{y=x^2-4}\\\\ \mathsf{y=x^2+2x-2x-4}\\\\ \mathsf{y=x(x+2)-2(x+2)}\\\\ \mathsf{y=(x+2)(x-2)} \mathsf{y=x^2-4}\\\\ \mathsf{y=x^2+2x-2x-4}\\\\ \mathsf{y=x(x+2)-2(x+2)}\\\\ \mathsf{y=(x+2)(x-2)}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3Dx%5E2-4%7D%5C%5C%5C%5C+%5Cmathsf%7By%3Dx%5E2%2B2x-2x-4%7D%5C%5C%5C%5C+%5Cmathsf%7By%3Dx%28x%2B2%29-2%28x%2B2%29%7D%5C%5C%5C%5C+%5Cmathsf%7By%3D%28x%2B2%29%28x-2%29%7D)
Encontrando as raízes da função:
![\mathsf{(x+2)(x-2)=0}\\\\ \begin{array}{rcl} \mathsf{x+2=0}&~\textsf{ ou }~&\mathsf{x-2=0}\\\\ \mathsf{x=-2}&~\textsf{ ou }~&\mathsf{x=2} \end{array} \mathsf{(x+2)(x-2)=0}\\\\ \begin{array}{rcl} \mathsf{x+2=0}&~\textsf{ ou }~&\mathsf{x-2=0}\\\\ \mathsf{x=-2}&~\textsf{ ou }~&\mathsf{x=2} \end{array}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28x%2B2%29%28x-2%29%3D0%7D%5C%5C%5C%5C+%5Cbegin%7Barray%7D%7Brcl%7D+%5Cmathsf%7Bx%2B2%3D0%7D%26amp%3B%7E%5Ctextsf%7B+ou+%7D%7E%26amp%3B%5Cmathsf%7Bx-2%3D0%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%3D-2%7D%26amp%3B%7E%5Ctextsf%7B+ou+%7D%7E%26amp%3B%5Cmathsf%7Bx%3D2%7D+%5Cend%7Barray%7D)
As raízes são![\mathsf{x_1=-2~~e~~x_2=2.} \mathsf{x_1=-2~~e~~x_2=2.}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx_1%3D-2%7E%7Ee%7E%7Ex_2%3D2.%7D)
Montando o quadro de sinais:
![\begin{array}{cc} \mathsf{x+2}&\qquad\mathsf{\underline{~~---}\underset{-2}{\bullet}\underline{++++}\underset{2}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\ \mathsf{x-2}&\qquad\mathsf{\underline{~~---}\underset{-2}{\bullet}\underline{----}\underset{2}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\\\ \mathsf{(x+2)(x-2)}&\qquad\mathsf{\underline{~~+++}\underset{-2}{\bullet}\underline{----}\underset{2}{\bullet}\underline{+++~~}_{\blacktriangleright}} \end{array} \begin{array}{cc} \mathsf{x+2}&\qquad\mathsf{\underline{~~---}\underset{-2}{\bullet}\underline{++++}\underset{2}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\ \mathsf{x-2}&\qquad\mathsf{\underline{~~---}\underset{-2}{\bullet}\underline{----}\underset{2}{\bullet}\underline{+++~~}_{\blacktriangleright}}\\\\\\ \mathsf{(x+2)(x-2)}&\qquad\mathsf{\underline{~~+++}\underset{-2}{\bullet}\underline{----}\underset{2}{\bullet}\underline{+++~~}_{\blacktriangleright}} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D+%5Cmathsf%7Bx%2B2%7D%26amp%3B%5Cqquad%5Cmathsf%7B%5Cunderline%7B%7E%7E---%7D%5Cunderset%7B-2%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%2B%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Bx-2%7D%26amp%3B%5Cqquad%5Cmathsf%7B%5Cunderline%7B%7E%7E---%7D%5Cunderset%7B-2%7D%7B%5Cbullet%7D%5Cunderline%7B----%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%28x%2B2%29%28x-2%29%7D%26amp%3B%5Cqquad%5Cmathsf%7B%5Cunderline%7B%7E%7E%2B%2B%2B%7D%5Cunderset%7B-2%7D%7B%5Cbullet%7D%5Cunderline%7B----%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D+%5Cend%7Barray%7D)
Então, concluímos que
![\left\{\! \begin{array}{ll} \mathsf{x^2-4\ge 0}&\mathsf{para~~x\le -2~~ou~~x\ge 2}\\\\ \mathsf{x^2-4<0}&\mathsf{para~~-2<x<2} \end{array} \right. \left\{\! \begin{array}{ll} \mathsf{x^2-4\ge 0}&\mathsf{para~~x\le -2~~ou~~x\ge 2}\\\\ \mathsf{x^2-4<0}&\mathsf{para~~-2<x<2} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Bll%7D+%5Cmathsf%7Bx%5E2-4%5Cge+0%7D%26amp%3B%5Cmathsf%7Bpara%7E%7Ex%5Cle+-2%7E%7Eou%7E%7Ex%5Cge+2%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2-4%26lt%3B0%7D%26amp%3B%5Cmathsf%7Bpara%7E%7E-2%26lt%3Bx%26lt%3B2%7D+%5Cend%7Barray%7D+%5Cright.)
Agora vamos resolver a inequação modular dada, dividindo o conjunto universo, de modo que a sentença do módulo não mude no intervalo considerado.
________
• Caso 1. Para![\mathsf{x\le -2~~ou~~x\ge 2:} \mathsf{x\le -2~~ou~~x\ge 2:}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5Cle+-2%7E%7Eou%7E%7Ex%5Cge+2%3A%7D)
Aqui temos
![\mathsf{x^2-4\ge 0\quad\Rightarrow\quad|x^2-4|=x^2-4} \mathsf{x^2-4\ge 0\quad\Rightarrow\quad|x^2-4|=x^2-4}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2-4%5Cge+0%5Cquad%5CRightarrow%5Cquad%7Cx%5E2-4%7C%3Dx%5E2-4%7D)
de modo que a inequação fica
![\mathsf{x^2-4>3x}\\\\ \mathsf{x^2-3x-4>0\qquad\quad(ii)} \mathsf{x^2-4>3x}\\\\ \mathsf{x^2-3x-4>0\qquad\quad(ii)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2-4%26gt%3B3x%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2-3x-4%26gt%3B0%5Cqquad%5Cquad%28ii%29%7D)
Calculando as raízes do lado esquerdo:
![\left\{\! \begin{array}{l} \mathsf{a=1}\\\mathsf{b=-3}\\\mathsf{c=-4} \end{array} \right.\\\\\\\\ \mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=(-3)^2-4\cdot 1\cdot (-4)}\\\\ \mathsf{\Delta=9+16}\\\\ \mathsf{\Delta=25} \left\{\! \begin{array}{l} \mathsf{a=1}\\\mathsf{b=-3}\\\mathsf{c=-4} \end{array} \right.\\\\\\\\ \mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=(-3)^2-4\cdot 1\cdot (-4)}\\\\ \mathsf{\Delta=9+16}\\\\ \mathsf{\Delta=25}](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Bl%7D+%5Cmathsf%7Ba%3D1%7D%5C%5C%5Cmathsf%7Bb%3D-3%7D%5C%5C%5Cmathsf%7Bc%3D-4%7D+%5Cend%7Barray%7D+%5Cright.%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3Db%5E2-4ac%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D%28-3%29%5E2-4%5Ccdot+1%5Ccdot+%28-4%29%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D9%2B16%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D25%7D)
![\begin{array}{rcl} \mathsf{r_1=\dfrac{-b-\sqrt{\Delta}}{2a}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-b+\sqrt{\Delta}}{2a}}\\\\ \mathsf{r_1=\dfrac{-(-3)-\sqrt{25}}{2\cdot 1}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-(-3)+\sqrt{25}}{2\cdot 1}}\\\\ \mathsf{r_1=\dfrac{3-5}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{3+5}{2}}\\\\ \mathsf{r_1=\dfrac{-2}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{8}{2}}\\\\ \mathsf{r_1=-1}&~\textsf{ e }~&\mathsf{r_2=4}\quad\longleftarrow\quad\textsf{(ra\'izes)} \end{array} \begin{array}{rcl} \mathsf{r_1=\dfrac{-b-\sqrt{\Delta}}{2a}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-b+\sqrt{\Delta}}{2a}}\\\\ \mathsf{r_1=\dfrac{-(-3)-\sqrt{25}}{2\cdot 1}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{-(-3)+\sqrt{25}}{2\cdot 1}}\\\\ \mathsf{r_1=\dfrac{3-5}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{3+5}{2}}\\\\ \mathsf{r_1=\dfrac{-2}{2}}&~\textsf{ e }~&\mathsf{r_2=\dfrac{8}{2}}\\\\ \mathsf{r_1=-1}&~\textsf{ e }~&\mathsf{r_2=4}\quad\longleftarrow\quad\textsf{(ra\'izes)} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D+%5Cmathsf%7Br_1%3D%5Cdfrac%7B-b-%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B-b%2B%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D%5Cdfrac%7B-%28-3%29-%5Csqrt%7B25%7D%7D%7B2%5Ccdot+1%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B-%28-3%29%2B%5Csqrt%7B25%7D%7D%7B2%5Ccdot+1%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D%5Cdfrac%7B3-5%7D%7B2%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B3%2B5%7D%7B2%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D%5Cdfrac%7B-2%7D%7B2%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D%5Cdfrac%7B8%7D%7B2%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Br_1%3D-1%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D4%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7B%28ra%5C%27izes%29%7D+%5Cend%7Barray%7D)
Fatorando o lado esquerdo de
obtemos
![\mathsf{a(x-r_1)(x-r_2)>0}\\\\ \mathsf{(x-(-1))(x-4)>0}\\\\ \mathsf{(x+1)(x-4)>0\quad\longleftarrow\quad\textsf{inequa\c{c}\~ao-produto}\qquad(iii)} \mathsf{a(x-r_1)(x-r_2)>0}\\\\ \mathsf{(x-(-1))(x-4)>0}\\\\ \mathsf{(x+1)(x-4)>0\quad\longleftarrow\quad\textsf{inequa\c{c}\~ao-produto}\qquad(iii)}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%28x-r_1%29%28x-r_2%29%26gt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28x-%28-1%29%29%28x-4%29%26gt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28x%2B1%29%28x-4%29%26gt%3B0%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Binequa%5Cc%7Bc%7D%5C%7Eao-produto%7D%5Cqquad%28iii%29%7D)
Montando o quadro de sinais (ver anexo para o caso 1).
Lembremos que estamos resolvendo a inequação em sobre um intervalo restrito (caso 1).
Como queremos que o lado esquerdo de
seja positivo, o intervalo de interesse é
![\begin{array}{cc} \mathsf{S_1}&\qquad\mathsf{\underline{~~\cdots\cdots}\underset{-2}{\bullet}\underline{\quad~~}\underset{-1}{\circ}\underline{\qquad\qquad}\underset{2}{\circ}\underline{\qquad}\underset{4}{\circ}\underline{\cdots\cdots~~}_{\blacktriangleright}} \end{array}\\\\\\ \mathsf{x\le-2~~ou~~x>4} \begin{array}{cc} \mathsf{S_1}&\qquad\mathsf{\underline{~~\cdots\cdots}\underset{-2}{\bullet}\underline{\quad~~}\underset{-1}{\circ}\underline{\qquad\qquad}\underset{2}{\circ}\underline{\qquad}\underset{4}{\circ}\underline{\cdots\cdots~~}_{\blacktriangleright}} \end{array}\\\\\\ \mathsf{x\le-2~~ou~~x>4}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D+%5Cmathsf%7BS_1%7D%26amp%3B%5Cqquad%5Cmathsf%7B%5Cunderline%7B%7E%7E%5Ccdots%5Ccdots%7D%5Cunderset%7B-2%7D%7B%5Cbullet%7D%5Cunderline%7B%5Cquad%7E%7E%7D%5Cunderset%7B-1%7D%7B%5Ccirc%7D%5Cunderline%7B%5Cqquad%5Cqquad%7D%5Cunderset%7B2%7D%7B%5Ccirc%7D%5Cunderline%7B%5Cqquad%7D%5Cunderset%7B4%7D%7B%5Ccirc%7D%5Cunderline%7B%5Ccdots%5Ccdots%7E%7E%7D_%7B%5Cblacktriangleright%7D%7D+%5Cend%7Barray%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx%5Cle-2%7E%7Eou%7E%7Ex%26gt%3B4%7D)
A solução para o caso 1:![\mathsf{S_1=\left]-\infty,\,-2\right]\,\cup\,\left]4,\,+\infty\right[.} \mathsf{S_1=\left]-\infty,\,-2\right]\,\cup\,\left]4,\,+\infty\right[.}](https://tex.z-dn.net/?f=%5Cmathsf%7BS_1%3D%5Cleft%5D-%5Cinfty%2C%5C%2C-2%5Cright%5D%5C%2C%5Ccup%5C%2C%5Cleft%5D4%2C%5C%2C%2B%5Cinfty%5Cright%5B.%7D)
________
• Caso 2. Para![\mathsf{-2<x<2:} \mathsf{-2<x<2:}](https://tex.z-dn.net/?f=%5Cmathsf%7B-2%26lt%3Bx%26lt%3B2%3A%7D)
Agora temos
![\mathsf{x^2-4<0\quad\Rightarrow\quad|x^2-4|=4-x^2} \mathsf{x^2-4<0\quad\Rightarrow\quad|x^2-4|=4-x^2}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2-4%26lt%3B0%5Cquad%5CRightarrow%5Cquad%7Cx%5E2-4%7C%3D4-x%5E2%7D)
de modo que a inequação fica
![\mathsf{4-x^2>3x}\\\\ \mathsf{x^2+3x-4<0\qquad\quad(iv)} \mathsf{4-x^2>3x}\\\\ \mathsf{x^2+3x-4<0\qquad\quad(iv)}](https://tex.z-dn.net/?f=%5Cmathsf%7B4-x%5E2%26gt%3B3x%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2%2B3x-4%26lt%3B0%5Cqquad%5Cquad%28iv%29%7D)
De forma análoga ao caso 1, calculando as raízes do lado esquerdo, encontramos
![\begin{array}{rcl} \mathsf{r_1=-4}&~\textsf{ e }~&\mathsf{r_2=1}\quad\longleftarrow\quad\textsf{(ra\'izes)} \end{array} \begin{array}{rcl} \mathsf{r_1=-4}&~\textsf{ e }~&\mathsf{r_2=1}\quad\longleftarrow\quad\textsf{(ra\'izes)} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D+%5Cmathsf%7Br_1%3D-4%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Br_2%3D1%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7B%28ra%5C%27izes%29%7D+%5Cend%7Barray%7D)
Fatorando o lado esquerdo de
obtemos
![\mathsf{a(x-r_1)(x-r_2)<0}\\\\ \mathsf{(x-(-4))(x-1)<0}\\\\ \mathsf{(x+4)(x-1)<0\quad\longleftarrow\quad\textsf{inequa\c{c}\~ao-produto}\qquad(v)} \mathsf{a(x-r_1)(x-r_2)<0}\\\\ \mathsf{(x-(-4))(x-1)<0}\\\\ \mathsf{(x+4)(x-1)<0\quad\longleftarrow\quad\textsf{inequa\c{c}\~ao-produto}\qquad(v)}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%28x-r_1%29%28x-r_2%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28x-%28-4%29%29%28x-1%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28x%2B4%29%28x-1%29%26lt%3B0%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Binequa%5Cc%7Bc%7D%5C%7Eao-produto%7D%5Cqquad%28v%29%7D)
Montando o quadro de sinais (ver anexo para o caso 2).
Como queremos que o lado esquerdo de
seja negativo, o intervalo de interesse é
![\begin{array}{cc} \mathsf{S_2}&\qquad\mathsf{\underline{\qquad}\underset{-4}{\circ}\underline{\quad\quad}\underset{-2}{\circ}\underline{\cdots\cdots\cdots}\underset{1}{\circ}\underline{\quad~~}\underset{2}{\circ}\underline{\qquad\quad}_{\blacktriangleright}} \end{array}\\\\\\ \mathsf{-2<x<1.} \begin{array}{cc} \mathsf{S_2}&\qquad\mathsf{\underline{\qquad}\underset{-4}{\circ}\underline{\quad\quad}\underset{-2}{\circ}\underline{\cdots\cdots\cdots}\underset{1}{\circ}\underline{\quad~~}\underset{2}{\circ}\underline{\qquad\quad}_{\blacktriangleright}} \end{array}\\\\\\ \mathsf{-2<x<1.}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D+%5Cmathsf%7BS_2%7D%26amp%3B%5Cqquad%5Cmathsf%7B%5Cunderline%7B%5Cqquad%7D%5Cunderset%7B-4%7D%7B%5Ccirc%7D%5Cunderline%7B%5Cquad%5Cquad%7D%5Cunderset%7B-2%7D%7B%5Ccirc%7D%5Cunderline%7B%5Ccdots%5Ccdots%5Ccdots%7D%5Cunderset%7B1%7D%7B%5Ccirc%7D%5Cunderline%7B%5Cquad%7E%7E%7D%5Cunderset%7B2%7D%7B%5Ccirc%7D%5Cunderline%7B%5Cqquad%5Cquad%7D_%7B%5Cblacktriangleright%7D%7D+%5Cend%7Barray%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B-2%26lt%3Bx%26lt%3B1.%7D)
________
A solução da inequação modular é a união das soluções encontradas para cada caso:
![\mathsf{S=S_1\cup S_2}\\\\ \mathsf{S=\left]-\infty,\,-2\right]\,\cup\,\left]4,\,+\infty\right[\,\cup\,\left]-2,\,1\right[}\\\\ \mathsf{S=\left]-\infty,\,1\right[\,\cup\,\left]4,\,+\infty\right[} \mathsf{S=S_1\cup S_2}\\\\ \mathsf{S=\left]-\infty,\,-2\right]\,\cup\,\left]4,\,+\infty\right[\,\cup\,\left]-2,\,1\right[}\\\\ \mathsf{S=\left]-\infty,\,1\right[\,\cup\,\left]4,\,+\infty\right[}](https://tex.z-dn.net/?f=%5Cmathsf%7BS%3DS_1%5Ccup+S_2%7D%5C%5C%5C%5C+%5Cmathsf%7BS%3D%5Cleft%5D-%5Cinfty%2C%5C%2C-2%5Cright%5D%5C%2C%5Ccup%5C%2C%5Cleft%5D4%2C%5C%2C%2B%5Cinfty%5Cright%5B%5C%2C%5Ccup%5C%2C%5Cleft%5D-2%2C%5C%2C1%5Cright%5B%7D%5C%5C%5C%5C+%5Cmathsf%7BS%3D%5Cleft%5D-%5Cinfty%2C%5C%2C1%5Cright%5B%5C%2C%5Ccup%5C%2C%5Cleft%5D4%2C%5C%2C%2B%5Cinfty%5Cright%5B%7D)
ou em notação usual
![\mathsf{S=\{x\in\mathbb{R}:~x<1~~ou~~x>4\}.} \mathsf{S=\{x\in\mathbb{R}:~x<1~~ou~~x>4\}.}](https://tex.z-dn.net/?f=%5Cmathsf%7BS%3D%5C%7Bx%5Cin%5Cmathbb%7BR%7D%3A%7Ex%26lt%3B1%7E%7Eou%7E%7Ex%26gt%3B4%5C%7D.%7D)
Bons estudos! :-)
Tags: inequação modular quadrática segundo grau função fatorar báscara solução resolver álgebra
_______________
Resolver a inequação modular:
• Vamos verificar quando a expressão do módulo muda de sentença, analisando o sinal da função que aparece no módulo:
Encontrando as raízes da função:
As raízes são
Montando o quadro de sinais:
Então, concluímos que
Agora vamos resolver a inequação modular dada, dividindo o conjunto universo, de modo que a sentença do módulo não mude no intervalo considerado.
________
• Caso 1. Para
Aqui temos
de modo que a inequação fica
Calculando as raízes do lado esquerdo:
Fatorando o lado esquerdo de
Montando o quadro de sinais (ver anexo para o caso 1).
Lembremos que estamos resolvendo a inequação em sobre um intervalo restrito (caso 1).
Como queremos que o lado esquerdo de
A solução para o caso 1:
________
• Caso 2. Para
Agora temos
de modo que a inequação fica
De forma análoga ao caso 1, calculando as raízes do lado esquerdo, encontramos
Fatorando o lado esquerdo de
Montando o quadro de sinais (ver anexo para o caso 2).
Como queremos que o lado esquerdo de
________
A solução da inequação modular é a união das soluções encontradas para cada caso:
ou em notação usual
Bons estudos! :-)
Tags: inequação modular quadrática segundo grau função fatorar báscara solução resolver álgebra
Anexos:
![](https://pt-static.z-dn.net/files/d9d/3469f7870a21ed2fbc6b179689cdeefd.png)
Perguntas interessantes
Ed. Física,
1 ano atrás
Espanhol,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás