Matemática, perguntado por HEEEEEELP, 1 ano atrás

Resolva a expressão

(1/4)-¹ . (1/2)² + 4².4-³

Soluções para a tarefa

Respondido por Renrel
1
Olá.

Nessa questão aplicaremos algumas propriedades de potências, que demonstro abaixo.

\diamondsuit~\Large\boxed{\boxed{\mathsf{r^{-s}=\dfrac{1}{r^s}~\therefore~\dfrac{1}{r}^{-s}=r^s}}}

\diamondsuit~\Large\boxed{\boxed{\mathsf{\left(\dfrac{x}{y}\right)^z=\dfrac{x^z}{y^z}}}}

\diamondsuit~\Large\boxed{\boxed{\mathsf{a^r\cdot a^s=a^{r+s}}}}

Vamos aos cálculos.

\Large\begin{array}{l}
\mathsf{\left(\dfrac{1}{4}\right)^{-1}\cdot\left(\dfrac{1}{2}\right)^{2}+4^2\cdot4^{-3}=}\\\\\\
\mathsf{\left(4^1\right)\cdot\left(\dfrac{1^{2}}{2^2}\right)+4^2\cdot4^{-3}=}\\\\\\
\mathsf{4^1\cdot\left(\dfrac{1}{4}\right)+4^2\cdot4^{-3}=}\\\\\\
\mathsf{4^1\cdot4^{-1}+4^2\cdot4^{-3}=}\\\\
\mathsf{4^{1-1}+4^{2-3}}=}\\\\
\mathsf{4^{0}+4^{-1}}=}\\\\
\mathsf{1+\dfrac{1}{4}}=}\\\\
\mathsf{\dfrac{4\cdot1+1}{4}=}\boxed{\mathsf{\dfrac{5}{4}}}}
\end{array}

Quaisquer dúvidas, deixe nos comentários.
Bons estudos.
Respondido por Makaveli1996
0

Oie, Td Bom?!

 = ( \frac{1}{4} ) {}^{ - 1}  \: . \: ( \frac{1}{2} ) {}^{2}  + 4 {}^{2}  \: . \: 4 {}^{ - 3}

 = ( \frac{1}{2 {}^{2} } ) {}^{ - 1}  \: . \: ( \frac{1}{2} ) {}^{2}  + 4 {}^{2 - 3}

 = ( 2 {}^{ - 2} ) {}^{ - 1}  \: . \: ( \frac{1}{2} ) {}^{2}  + 4 {}^{ - 1}

 = 2 {}^{2}  \: . \: ( \frac{1}{2} ) {}^{2}  + 4 {}^{ - 1}

 = (2 \: . \:  \frac{1}{2} ) {}^{2}  + (2 {}^{2} ) {}^{ - 1}

 = (2 \: . \:  \frac{1}{2} ) {}^{2}  + 2 {}^{ - 2}

 = 1 {}^{2}  +  \frac{1}{2 {}^{2} }

 = 1 +  \frac{1}{4}

 =  \frac{4 + 1}{4}

 =  \frac{5}{4}

Att. Makaveli1996

Perguntas interessantes