resolva a equação:
U=N=
(n+1)!-n! / (n-1)!=7n
Usuário anônimo:
Sugestão: [(n+1)!-n!]/(n-1)!=7n
Soluções para a tarefa
Respondido por
31
Olá novamente!
![\frac{(n+1)!-n!}{(n-1)!}=7n\\\\\frac{(n+1)\cdot\,n\cdot(n-1)!-n\cdot(n-1)!}{(n-1)!}=7n\\\\\frac{(n-1)!\left[n(n+1)-n\right]}{(n-1)!}=7n\\\\\frac{(n-1)!(n^2+n-n)}{(n-1)!}=7n\\\\\frac{n^2}{1}=7n\\\\n^2=7n\\n^2-7n=0\\n(n-7)=0\\\boxed{n=7} \frac{(n+1)!-n!}{(n-1)!}=7n\\\\\frac{(n+1)\cdot\,n\cdot(n-1)!-n\cdot(n-1)!}{(n-1)!}=7n\\\\\frac{(n-1)!\left[n(n+1)-n\right]}{(n-1)!}=7n\\\\\frac{(n-1)!(n^2+n-n)}{(n-1)!}=7n\\\\\frac{n^2}{1}=7n\\\\n^2=7n\\n^2-7n=0\\n(n-7)=0\\\boxed{n=7}](https://tex.z-dn.net/?f=%5Cfrac%7B%28n%2B1%29%21-n%21%7D%7B%28n-1%29%21%7D%3D7n%5C%5C%5C%5C%5Cfrac%7B%28n%2B1%29%5Ccdot%5C%2Cn%5Ccdot%28n-1%29%21-n%5Ccdot%28n-1%29%21%7D%7B%28n-1%29%21%7D%3D7n%5C%5C%5C%5C%5Cfrac%7B%28n-1%29%21%5Cleft%5Bn%28n%2B1%29-n%5Cright%5D%7D%7B%28n-1%29%21%7D%3D7n%5C%5C%5C%5C%5Cfrac%7B%28n-1%29%21%28n%5E2%2Bn-n%29%7D%7B%28n-1%29%21%7D%3D7n%5C%5C%5C%5C%5Cfrac%7Bn%5E2%7D%7B1%7D%3D7n%5C%5C%5C%5Cn%5E2%3D7n%5C%5Cn%5E2-7n%3D0%5C%5Cn%28n-7%29%3D0%5C%5C%5Cboxed%7Bn%3D7%7D)
Perguntas interessantes
Inglês,
1 ano atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás