Resolva a equação trigonométrica tg² x=1 de acordo com o intervalo 0≤x≤2π
Soluções para a tarefa
Resposta:
S = {π/4 3π/4, 5π/4, 7/4} = { 45°, 135°, 225°, 315°}
Explicação passo-a-passo:
tg²x = 1 ⇒ tgx = - 1 ou tgx = 1
tgx = -1 ⇒ x = (π-π/4)/4 = (4π-π)/4 = 3π/4 = 135°
ou x = 2π - π/4⇒ x = (8π -π)4 = 7π/4 = 315°
tgx = 1 ⇒ x = π/4 = 45°
ou x = (π + π/4) ⇒ x = (4π + π)/4 = 5π/4 = 225°
A solução dessa equação trigonométrica é:
S = {π/4, 5π/4, 3π/4, 7π/4}
Equação trigonométrica
tg² x = 1
tg x = ±√1
tg x = ±1
Para tg x = 1, x deve ser um ângulo que pertence ao 1º ou ao 3º quadrantes, pois nesses quadrantes a tangente tem sinal positivo.
O ângulo cuja tangente vale 1 é 45°. Seu correspondente no 3° quadrante é 225°. Em radianos, a solução é π/4 e 5π/4.
Para tg x = - 1, x deve ser um ângulo que pertence ao 2º ou ao 4º quadrantes, pois nesses quadrantes a tangente tem sinal negativo.
Os ângulos correspondentes a 45° nesses quadrantes são 135° e 315°. Em radianos, a solução é 3π/4 e 7π/4.
Todas essas soluções são possíveis considerando o intervalo 0 ≤ x ≤ 2π, ou seja, todo o círculo trigonométrico.
Mais sobre equação trigonométrica em:
https://brainly.com.br/tarefa/29870882